Nan Xue, Hayashi Kei, Huang Zhicheng, Miyazaki Yuzuru
Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
Sci Adv. 2025 Jun 27;11(26):eadw4514. doi: 10.1126/sciadv.adw4514.
Chemical bonding influences various physical properties and holds promise for guiding the discovery of high-performance materials. In half-Heusler (HH) compounds, complex interactions between constituent atoms, featuring both covalent and ionic characters, are supposed to affect mechanical and thermoelectric behavior. We use a data-driven approach based on first-principles calculations to identify promising HH compounds and explore the correlations between bonding-related features and functional properties. Our analysis suggests that enhanced ─ bonding correlates with greater bulk modulus (), larger Grüneisen parameter, and enhanced power factor. Tungsten-iron-lead stands out with excellent = 162.4 gigapascals and a low lattice thermal conductivity of ~7.7 watts per meter per kelvin, leading to a figure of merit of ~0.52 (at 526 kelvin) without any nanostructuring, surpassing that of vanadium-iron-antimony by ~80.8%. These findings highlight how chemical bonding characteristics, interpreted from electronic structure and orbital-resolved bonding analysis, provide in-depth insights into the structure-to-property correlation to accelerate the screening out of potential thermoelectrics.
化学键影响各种物理性质,并有望指导高性能材料的发现。在半赫斯勒(HH)化合物中,组成原子之间的复杂相互作用具有共价和离子特征,被认为会影响机械和热电行为。我们使用基于第一性原理计算的数据驱动方法来识别有前景的HH化合物,并探索与键合相关的特征和功能性质之间的相关性。我们的分析表明,增强的键合与更大的体积模量()、更大的格林艾森参数以及增强的功率因数相关。钨铁铅表现突出,具有出色的 = 162.4吉帕斯卡,且晶格热导率低至约7.7瓦每米每开尔文,在没有任何纳米结构的情况下,优值约为0.52(在526开尔文时),比钒铁锑高出约80.8%。这些发现突出了从电子结构和轨道分辨键合分析中解读出的化学键特征如何为结构与性质的相关性提供深入见解,以加速潜在热电材料的筛选。