Zackin Alec K, Kalidindi Subhash, Yi Hyunmin
Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States.
ACS Appl Bio Mater. 2025 Jul 21;8(7):6013-6024. doi: 10.1021/acsabm.5c00632. Epub 2025 Jun 27.
Simple and tunable production of macroporous hydrogel microparticles for rapid protein quantification in a suspension array format remains a major challenge. We exploit biologically derived rigid nanofibers as a multifunctional modality in a robust micromolding method using a postfabrication bioconjugation approach to address this challenge. Specifically, chitin-core chitosan-sheath nanowhiskers (CSNW) with a tunable amine titer are prepared under mild deacetylation reaction conditions. Transmission electron microscopy, dynamic light scattering, and dynamic viscosity measurements show rigid bionanofibers with substantially lower viscosity compared to solubilized linear forms of chitosan and other biopolymers, suggesting improved handling and manufacturability. Fluorescent labeling studies on polyacrylamide-based microspheres fabricated via micromolding indicate stable and uniform incorporation of CSNW in hydrogel microspheres and the readily tunable chemical functionality of CSNW. Further, reliable fabrication using acrylate-modified CSNW as the primary cross-linker, along with selective and improved protein conjugation kinetics, attests to the macroporous network of the hydrogel microparticles and illustrates the multifunctionality of CSNW. We thus envision that our approach in harnessing potent bionanofibers and micromolding can be readily extended to produce a wide variety of multifaceted microscale materials with a multitude of desirable features with improved performances for applications such as rapid biosensing and biodiagnostics.
以悬浮阵列形式简单且可调节地制备用于快速蛋白质定量的大孔水凝胶微粒仍然是一项重大挑战。我们利用生物衍生的刚性纳米纤维作为一种多功能模式,采用一种强大的微成型方法,并结合后制备生物共轭方法来应对这一挑战。具体而言,在温和的脱乙酰化反应条件下制备具有可调节胺含量的几丁质核心壳聚糖鞘纳米晶须(CSNW)。透射电子显微镜、动态光散射和动态粘度测量表明,与壳聚糖和其他生物聚合物的溶解线性形式相比,刚性生物纳米纤维的粘度大大降低,这表明其操作和可制造性得到了改善。通过微成型制备的基于聚丙烯酰胺的微球的荧光标记研究表明,CSNW在水凝胶微球中稳定且均匀地掺入,并且CSNW具有易于调节的化学功能。此外,使用丙烯酸酯改性的CSNW作为主要交联剂进行可靠的制备,以及具有选择性且改善的蛋白质共轭动力学,证明了水凝胶微粒的大孔网络,并说明了CSNW的多功能性。因此,我们设想,我们利用强大的生物纳米纤维和微成型的方法可以很容易地扩展,以生产具有多种理想特性的各种多面微尺度材料,这些材料具有改进的性能,可用于快速生物传感和生物诊断等应用。