Dresselhaus Thomas, Balboni Martina, Berg Lea, Dolata Anika, Hochholdinger Frank, Huang Yongyu, Jiang Guojing, von Korff Maria, Ku Jia-Chi, van der Linde Karina, Maika Jan, Mondragon Cecilia Lara, Raissig Michael T, Schnittger Arp, Schnurbusch Thorsten, Simon Rüdiger, Stahl Yvonne, Timmermans Marja, Thirulogachandar Venkatasubbu, Zhao Shuangshuang, Zhou Yaping
Institute of Plant Sciences, Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93040, Germany.
Institute of Plant Science and Microbiology, Developmental Biology, University of Hamburg, Hamburg 22609, Germany.
Plant Cell. 2025 Jul 1;37(7). doi: 10.1093/plcell/koaf150.
Meristems are major determinants of plant architecture, diversification, and acclimation to environmental stresses. Moreover, meristems play also a major role during crop domestication and are fundamentally important for the productivity of crop plants as they directly determine biomass and grain yield. While vegetative meristems shape the basic plant body plan and produce all above- and below-ground parts of plants, some vegetative meristems transit to reproductive meristems, forming sexual organs and germ cells. Most knowledge about plant meristems was generated using the model plant Arabidopsis. Compared with Arabidopsis, architecture of grass or cereals, including crops like maize, wheat, barley, rice and sorghum, is more complex: cereals produce additional organs like a coleoptile, seminal roots originating from the scutellar nodes in the embryo and shoot-borne crown roots as well as highly complex inflorescence meristems with meristem types absent in eudicots. Moreover, studies in cereals indicated that paradigms based on studies using Arabidopsis are not universally applicable. This review therefore aims to provide a comprehensive overview about the initiation, establishment, maintenance, and function of the various cereal meristems and their stem cell niches that shape our most important crop plants. Stem cell-like systems involved in leaf pattering and germline formation are also considered. The focus is also on the significant progress that has been made recently using novel tools to elucidate gene regulatory networks underlying the development and function of the various cereal meristems.
分生组织是植物结构、多样性以及对环境胁迫适应性的主要决定因素。此外,分生组织在作物驯化过程中也发挥着重要作用,并且对于作物的生产力至关重要,因为它们直接决定生物量和谷物产量。营养分生组织塑造了植物的基本体型,并产生植物地上和地下的所有部分,而一些营养分生组织会转变为生殖分生组织,形成有性器官和生殖细胞。关于植物分生组织的大多数知识是通过模式植物拟南芥获得的。与拟南芥相比,禾本科植物或谷类作物(包括玉米、小麦、大麦、水稻和高粱等作物)的结构更为复杂:谷类作物会产生额外的器官,如胚芽鞘、源自胚胎盾片节的种子根以及茎生冠根,还有高度复杂的花序分生组织,其中包含双子叶植物中不存在的分生组织类型。此外,对谷类作物的研究表明,基于拟南芥研究得出的范例并非普遍适用。因此,本综述旨在全面概述各种谷类作物分生组织及其干细胞微环境的起始、建立、维持和功能,这些分生组织和干细胞微环境塑造了我们最重要的作物。还考虑了参与叶片图案形成和种系形成的类干细胞系统。重点还在于最近利用新工具在阐明各种谷类作物分生组织发育和功能背后的基因调控网络方面所取得的重大进展。