Runyan Lucas A, Kudryashova Elena, Agrawal Richa, Mohamed Mubarik, Kudryashov Dmitri S
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
J Mol Biol. 2025 Jun 25;437(19):169306. doi: 10.1016/j.jmb.2025.169306.
Intracellular pH (pH) is a fundamental component of cell homeostasis. Controlled elevations in pH precede and accompany cell polarization, cytokinesis, and directional migration. pH dysregulation contributes to cancer, neurodegenerative diseases, diabetes, and other metabolic disorders. While cytoskeletal rearrangements are crucial for these processes, only a few cytoskeletal proteins, namely CDC42, cofilin, talin, cortactin, α-actinin, and AIP1 have been documented as pH sensors. Here, we report that actin-bundling proteins plastin 2 (PLS2, aka LCP1) and plastin 3 (PLS3) respond to physiological scale pH fluctuations by a reduced F-actin bundling at alkaline pH. The inhibition of PLS2 actin-bundling activity at elevated pH stems from the reduced affinity of the N-terminal actin-binding domain (ABD1) to actin. In fibroblast cells, elevated cytosolic pH caused the dissociation of ectopically expressed PLS2 and 3 from actin structures, whereas acidic conditions promoted their tighter association with focal adhesions and stress fibers. We identified His207 as one of the pH-sensing residues of PLS2 whose mutation to Lys and Tyr reduces pH sensitivity by enhancing and inhibiting the bundling ability, respectively. Our results suggest that weaker actin bundling by plastin isoforms at alkaline pH favors higher dynamics of the actin cytoskeleton. Therefore, like other cytoskeleton pH sensors, plastins promote disassembly and faster dynamics of cytoskeletal components during cytokinesis and cell migration. Since both plastins are implemented in cancer, their pH sensitivity may contribute to the accelerated proliferation and enhanced invasive and metastatic potentials of cancer cells at alkaline pH.
细胞内pH值(pH)是细胞稳态的一个基本组成部分。pH值的可控升高先于并伴随细胞极化、胞质分裂和定向迁移。pH值失调会导致癌症、神经退行性疾病、糖尿病和其他代谢紊乱。虽然细胞骨架重排对这些过程至关重要,但只有少数细胞骨架蛋白,即CDC42、丝切蛋白、踝蛋白、皮层肌动蛋白、α-辅肌动蛋白和AIP1被记录为pH传感器。在此,我们报告肌动蛋白成束蛋白丝束蛋白2(PLS2,又名LCP1)和丝束蛋白3(PLS3)通过在碱性pH条件下减少F-肌动蛋白成束来响应生理范围内的pH波动。在升高的pH条件下,PLS2肌动蛋白成束活性的抑制源于N端肌动蛋白结合结构域(ABD1)与肌动蛋白亲和力的降低。在成纤维细胞中,胞质pH升高导致异位表达的PLS2和3从肌动蛋白结构上解离,而酸性条件促进它们与粘着斑和应力纤维更紧密地结合。我们确定His207是PLS2的pH传感残基之一,将其突变为赖氨酸和酪氨酸分别通过增强和成束能力来降低pH敏感性。我们的结果表明,在碱性pH条件下,丝束蛋白异构体较弱的肌动蛋白成束有利于肌动蛋白细胞骨架更高的动力学。因此,与其他细胞骨架pH传感器一样,丝束蛋白在胞质分裂和细胞迁移过程中促进细胞骨架成分的解聚和更快的动力学。由于两种丝束蛋白都在癌症中发挥作用,它们的pH敏感性可能有助于癌细胞在碱性pH条件下加速增殖以及增强侵袭和转移潜能。
Int J Mol Sci. 2025-7-21
Proc Natl Acad Sci U S A. 2025-2-11
Nat Struct Mol Biol. 2022-6
Nat Struct Mol Biol. 2025-5
Biomolecules. 2023-2-28
Proc Natl Acad Sci U S A. 2022-9-13
Cytoskeleton (Hoboken). 2022-4
Int J Mol Sci. 2022-6-24
Nat Struct Mol Biol. 2022-6