文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞细胞内 pH 动力学通过定时 G1 退出和 G2 转变来调节细胞周期。

Single-cell intracellular pH dynamics regulate the cell cycle by timing the G1 exit and G2 transition.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.

出版信息

J Cell Sci. 2023 May 15;136(10). doi: 10.1242/jcs.260458. Epub 2023 May 31.


DOI:10.1242/jcs.260458
PMID:37133398
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10281514/
Abstract

Transient changes in intracellular pH (pHi) regulate normal cell behaviors, but roles for spatiotemporal pHi dynamics in single-cell behaviors remain unclear. Here, we mapped single-cell spatiotemporal pHi dynamics during mammalian cell cycle progression both with and without cell cycle synchronization. We found that single-cell pHi is dynamic throughout the cell cycle: pHi decreases at G1/S, increases in mid-S, decreases at late S, increases at G2/M and rapidly decreases during mitosis. Importantly, although pHi is highly dynamic in dividing cells, non-dividing cells have attenuated pHi dynamics. Using two independent pHi manipulation methods, we found that low pHi inhibits completion of S phase whereas high pHi promotes both S/G2 and G2/M transitions. Our data also suggest that low pHi cues G1 exit, with decreased pHi shortening G1 and increased pHi elongating G1. Furthermore, dynamic pHi is required for S phase timing, as high pHi elongates S phase and low pHi inhibits S/G2 transition. This work reveals that spatiotemporal pHi dynamics are necessary for cell cycle progression at multiple phase transitions in single human cells.

摘要

细胞内 pH 值(pHi)的瞬时变化调节着正常细胞的行为,但在单细胞行为中,时空 pHi 动力学的作用仍不清楚。在这里,我们在哺乳动物细胞周期进程中绘制了有丝分裂和无细胞周期同步的单细胞时空 pHi 动力学图。我们发现,单细胞的 pHi 在整个细胞周期中都是动态的:在 G1/S 时降低,在中期 S 时升高,在晚期 S 时降低,在 G2/M 时升高,并在有丝分裂期间迅速降低。重要的是,尽管分裂细胞中的 pHi 非常动态,但非分裂细胞的 pHi 动力学减弱。使用两种独立的 pHi 操作方法,我们发现低 pHi 抑制 S 期的完成,而高 pHi 促进 S/G2 和 G2/M 转换。我们的数据还表明,低 pHi 提示 G1 退出,降低 pHi 缩短 G1,增加 pHi 延长 G1。此外,动态 pHi 是 S 期定时所必需的,因为高 pHi 延长 S 期,而低 pHi 抑制 S/G2 转换。这项工作揭示了时空 pHi 动力学在单个人类细胞的多个相变过程中对细胞周期进展是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/21b0333674ba/joces-136-260458-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/10500dc5e7e8/joces-136-260458-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/1d2f88a2ad0d/joces-136-260458-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/b8911bd0689b/joces-136-260458-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/c109df5a48f2/joces-136-260458-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/75b2b9a0e487/joces-136-260458-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/1d82910c2577/joces-136-260458-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/5bea996f24de/joces-136-260458-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/21b0333674ba/joces-136-260458-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/10500dc5e7e8/joces-136-260458-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/1d2f88a2ad0d/joces-136-260458-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/b8911bd0689b/joces-136-260458-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/c109df5a48f2/joces-136-260458-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/75b2b9a0e487/joces-136-260458-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/1d82910c2577/joces-136-260458-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/5bea996f24de/joces-136-260458-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae5/10281514/21b0333674ba/joces-136-260458-g8.jpg

相似文献

[1]
Single-cell intracellular pH dynamics regulate the cell cycle by timing the G1 exit and G2 transition.

J Cell Sci. 2023-5-15

[2]
Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition.

J Biol Chem. 2003-11-7

[3]
Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4C1 cells.

J Cell Physiol. 1996-1

[4]
Synchronization of HeLa Cells to Various Interphases Including G1, S, and G2 Phases.

Methods Mol Biol. 2022

[5]
Regulation of intracellular pH during the G1/S-phase transition of the neuroblastoma cell cycle.

Exp Cell Res. 1988-2

[6]
Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase.

Virology. 1998-4-25

[7]
Sequestration of mitotic (M-phase) chromosomes in autophagosomes: mitotic programmed cell death in human Chang liver cells induced by an OH* burst from vanadyl(4).

Anat Rec. 1996-5

[8]
Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle.

Cancer Res. 1993-4-15

[9]
CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases.

Plant Cell. 2004-9

[10]
Roles of pH in control of cell proliferation.

Acta Physiol (Oxf). 2018-4-16

引用本文的文献

[1]
Human Plastins are Novel Cytoskeletal pH Sensors with a Reduced F-actin Bundling Capacity at Basic pH.

J Mol Biol. 2025-6-25

[2]
A role for pH dynamics regulating transcription factor DNA-binding selectivity.

Nucleic Acids Res. 2025-5-22

[3]
Human plastins are novel cytoskeletal pH sensors with a reduced F-actin bundling capacity at basic pH.

bioRxiv. 2025-3-28

[4]
Biophysical Properties of Somatic Cancer Mutations in the S4 Transmembrane Segment of the Human Voltage-Gated Proton Channel hH1.

Biomolecules. 2025-1-21

[5]
Protein structure and interactions elucidated with in-cell NMR for different cell cycle phases and in 3D human tissue models.

Commun Biol. 2025-2-7

[6]
CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy.

Mol Biol Cell. 2025-1-1

[7]
Dissecting the pH Sensitivity of Kinesin-Driven Transport.

J Phys Chem B. 2024-12-5

[8]
Ionizable networks mediate pH-dependent allostery in SH2 signaling proteins.

bioRxiv. 2024-8-21

[9]
Stress pathway outputs are encoded by pH-dependent clustering of kinase components.

Nat Commun. 2024-8-5

[10]
Intracellular pH dynamics respond to microenvironment stiffening and mediate vasculogenic mimicry through β-catenin.

bioRxiv. 2024-6-4

本文引用的文献

[1]
Lactate regulates cell cycle by remodelling the anaphase promoting complex.

Nature. 2023-4

[2]
An Optogenetic Tool to Raise Intracellular pH in Single Cells and Drive Localized Membrane Dynamics.

J Am Chem Soc. 2021-11-17

[3]
Cell cycle control in cancer.

Nat Rev Mol Cell Biol. 2022-1

[4]
A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma.

Elife. 2021-5-13

[5]
Release from cell cycle arrest with Cdk4/6 inhibitors generates highly synchronized cell cycle progression in human cell culture.

Open Biol. 2020-10

[6]
Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools.

Cancers (Basel). 2020-9-25

[7]
Bicarbonate activates glycolysis and lactate production in corneal endothelial cells by increased pH.

Exp Eye Res. 2020-10

[8]
Pyrazine ring-based Na/H exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1.

Sci Rep. 2020-4-2

[9]
Temporal integration of mitogen history in mother cells controls proliferation of daughter cells.

Science. 2020-4-2

[10]
The Acidic Tumor Microenvironment as a Driver of Cancer.

Annu Rev Physiol. 2019-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索