Suppr超能文献

DGHNN:一种用于泛癌相关基因预测的深度图与超图神经网络

DGHNN: a deep graph and hypergraph neural network for pan-cancer related gene prediction.

作者信息

Li Bing, Xiao Xin, Zhang Chao, Xiao Ming, Zhang Le

机构信息

College of Computer Science, Sichuan University, Chengdu, 610000, China.

Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, 610000, China.

出版信息

Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf379.

Abstract

MOTIVATION

Studies on pan-cancer related genes play important roles in cancer research and precision therapy. With the richness of research data and the development of neural networks, several successful methods that take advantage of multiomics data, protein interaction networks, and graph neural networks to predict cancer genes have emerged. However, these methods also have several problems, such as ignoring potentially useful biological data and providing limited representations of higher-order information.

RESULTS

In this work, we propose a pan-cancer related gene predictive model, the DGHNN, which takes biological pathways into consideration, applies a deep graph and hypergraph neural network to encode the higher-order information in the protein interaction network and biological pathway, introduces skip residual connections into the deep graph and hypergraph neural network to avoid problems with training the deep neural network, and finally uses a feature tokenizer and transformer for classification. The experimental results show that the DGHNN outperforms other methods and achieves state-of-the-art model performance for pan-cancer related gene prediction.

AVAILABILITY AND IMPLEMENTATION

The DGHNN is available at https://github.com/skytea/DGHNN.

摘要

动机

泛癌相关基因的研究在癌症研究和精准治疗中发挥着重要作用。随着研究数据的丰富以及神经网络的发展,出现了几种利用多组学数据、蛋白质相互作用网络和图神经网络来预测癌症基因的成功方法。然而,这些方法也存在一些问题,例如忽略了潜在有用的生物学数据,并且对高阶信息的表示有限。

结果

在这项工作中,我们提出了一种泛癌相关基因预测模型DGHNN,该模型考虑了生物途径,应用深度图和超图神经网络对蛋白质相互作用网络和生物途径中的高阶信息进行编码,在深度图和超图神经网络中引入跳跃残差连接以避免深度神经网络训练中的问题,最后使用特征分词器和变换器进行分类。实验结果表明,DGHNN优于其他方法,并在泛癌相关基因预测方面达到了当前最优的模型性能。

可用性和实现方式

DGHNN可在https://github.com/skytea/DGHNN获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb05/12254129/f866fc5c3f8e/btaf379f1.jpg

相似文献

1
DGHNN: a deep graph and hypergraph neural network for pan-cancer related gene prediction.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf379.
5
GraphPro: An interpretable graph neural network-based model for identifying promoters in multiple species.
Comput Biol Med. 2024 Sep;180:108974. doi: 10.1016/j.compbiomed.2024.108974. Epub 2024 Aug 2.
6
Differentiable graph clustering with structural grouping for single-cell RNA-seq data.
Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf347.
7
Exploring Multiconnectivity and Subdivision Functions of Brain Network via Heterogeneous Graph Network for Cognitive Disorder Identification.
IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):12400-12414. doi: 10.1109/TNNLS.2024.3481667.
10
Building Explainable Graph Neural Network by Sparse Learning for the Drug-Protein Binding Prediction.
J Comput Biol. 2025 Jul;32(7):632-645. doi: 10.1089/cmb.2025.0074. Epub 2025 Jun 12.

本文引用的文献

1
Developing a multiomics data-based mathematical model to predict colorectal cancer recurrence and metastasis.
BMC Med Inform Decis Mak. 2025 May 15;25(Suppl 2):188. doi: 10.1186/s12911-025-03012-9.
2
The Large Language Models on Biomedical Data Analysis: A Survey.
IEEE J Biomed Health Inform. 2025 Jun;29(6):4486-4497. doi: 10.1109/JBHI.2025.3530794.
4
CpG Island Definition and Methylation Mapping of the T2T-YAO Genome.
Genomics Proteomics Bioinformatics. 2024 Jul 3;22(2). doi: 10.1093/gpbjnl/qzae009.
5
Boosting Your Context by Dual Similarity Checkup for In-Context Learning Medical Image Segmentation.
IEEE Trans Med Imaging. 2025 Jan;44(1):310-319. doi: 10.1109/TMI.2024.3440311. Epub 2025 Jan 2.
6
The receiver operating characteristic curve accurately assesses imbalanced datasets.
Patterns (N Y). 2024 May 31;5(6):100994. doi: 10.1016/j.patter.2024.100994. eCollection 2024 Jun 14.
9
PCGIMA: developing the web server for human position-defined CpG islands methylation analysis.
Front Genet. 2024 Mar 13;15:1367731. doi: 10.3389/fgene.2024.1367731. eCollection 2024.
10
A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.
Comput Biol Med. 2024 Mar;171:108189. doi: 10.1016/j.compbiomed.2024.108189. Epub 2024 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验