Xu Linguang, Xu Dingli, Hai Xuyang, Wu Haoyue, Duan Qingqing, Zhang Gang, Ge Qiang
School of Mathematics Physics and Finance, Anhui Polytechnic University, Wuhu 241000, China.
School of Mathematics Physics and Finance, Anhui Polytechnic University, Wuhu 241000, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Dec 15;343:126596. doi: 10.1016/j.saa.2025.126596. Epub 2025 Jun 24.
Noise interference stands as a critical factor that restricts the performance and detection accuracy of gas sensors relying on tunable diode laser absorption spectroscopy (TDLAS) technology. To address this issue, a novel neural network-based spectral optimization model is proposed and applied to near-infrared methane (CH) spectral measurement. The model combines a neural network filter (NNF) with convolutional and bidirectional long and short-term memory coupling and a back-propagation neural network concentration predictor (NCP) improved by an adaptive enhancement algorithm. The experiments utilize database parameters to construct spectral datasets for model training and conduct test experiments with standard gases for model optimization. The experimental results demonstrate that, compared with the traditional filtering algorithm, the NNF proposed in this paper enhances the signal-to-noise ratio improvement effect of spectral signals by 2.58 times. Additionally, the average absolute error and average relative error of CH concentration predicted based on the NCP are 1.29 ppm and 2.05 %, respectively. The results of Allan variance analysis indicate that when the optimal integration time is set to 406 s, the detection limit of CH can reach 34.83 ppb. The TDLAS spectral optimization model proposed in this paper offers significant references for the optimization algorithms of high-precision trace gas detection.
噪声干扰是限制基于可调谐二极管激光吸收光谱(TDLAS)技术的气体传感器性能和检测精度的关键因素。为了解决这个问题,提出了一种基于神经网络的新型光谱优化模型,并将其应用于近红外甲烷(CH)光谱测量。该模型将神经网络滤波器(NNF)与卷积和双向长短期记忆耦合相结合,并通过自适应增强算法改进了反向传播神经网络浓度预测器(NCP)。实验利用数据库参数构建光谱数据集进行模型训练,并使用标准气体进行测试实验以优化模型。实验结果表明,与传统滤波算法相比,本文提出的NNF将光谱信号的信噪比改善效果提高了2.58倍。此外,基于NCP预测的CH浓度的平均绝对误差和平均相对误差分别为1.29 ppm和2.05%。阿伦方差分析结果表明,当最佳积分时间设置为406 s时,CH的检测限可达34.83 ppb。本文提出的TDLAS光谱优化模型为高精度痕量气体检测的优化算法提供了重要参考。