Suppr超能文献

探索铝制饮料罐作为空气燃料电池功能阳极的升级回收中的电解质效应。

Exploring electrolyte effects in the upcycling of aluminum beverage cans as functional anodes for air fuel cells.

作者信息

Barakat Nasser A M, Samir Esra, Ghouri Zafar Khan

机构信息

Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61516, Egypt.

Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61516, Egypt.

出版信息

Waste Manag. 2025 Aug;205:114977. doi: 10.1016/j.wasman.2025.114977. Epub 2025 Jun 27.

Abstract

This study explores the feasibility of upcycling aluminum beverage cans as functional anodes in aluminum-air (Al-air) fuel cells, aiming to valorize post-consumer waste for sustainable energy generation. The electrochemical performance of these systems was evaluated using various electrolytes-acidic (sulfuric acid and hydrochloric acid), alkaline (potassium hydroxide and sodium hydroxide), and neutral (sodium chloride)-at different concentrations. Polarization behavior and maximum power density were analyzed to determine optimal electrolyte conditions. Alkaline electrolytes exhibited superior performance, with potassium hydroxide delivering the highest power density of 35.8 W/m at optimal concentration, followed by sodium hydroxide at 31.6 W/m. In contrast, neutral (NaCl, 6.08 W/m) and acidic electrolytes (HCl, 6.1 W/m; HSO, 3.39 W/m) demonstrated moderate to low performance. Although theoretical open circuit potentials (OCPs) are higher for acidic electrolytes, experimental values were lower due to increased parasitic reactions and hydrogen evolution, particularly in acidic environments. The study further investigates the impact of temperature, revealing that elevated temperatures significantly enhance power output and reduce activation energy barriers. Apparent activation energies were estimated for each electrolyte, highlighting differences in electrochemical kinetics across systems. Overall, this work not only underscores the critical role of electrolyte nature and temperature on battery performance but also presents a sustainable strategy for repurposing aluminum waste into energy-generating components. Moreover, this approach not only enhances the value of aluminum waste but also offers a scalable pathway for sustainable energy generation through post-consumer material utilization.

摘要

本研究探讨了将铝制饮料罐升级改造为铝空气(Al-air)燃料电池中功能性阳极的可行性,旨在将消费后废物转化为可持续能源。使用各种不同浓度的电解质——酸性(硫酸和盐酸)、碱性(氢氧化钾和氢氧化钠)和中性(氯化钠)——对这些系统的电化学性能进行了评估。分析了极化行为和最大功率密度,以确定最佳电解质条件。碱性电解质表现出优异的性能,在最佳浓度下,氢氧化钾的功率密度最高,为35.8W/m,其次是氢氧化钠,为31.6W/m。相比之下,中性(NaCl,6.08W/m)和酸性电解质(HCl,6.1W/m;HSO,3.39W/m)的性能中等至较低。尽管酸性电解质的理论开路电位(OCPs)较高,但由于寄生反应增加和析氢现象,特别是在酸性环境中,实验值较低。该研究进一步调查了温度的影响,结果表明升高温度可显著提高功率输出并降低活化能垒。估算了每种电解质的表观活化能,突出了不同系统间电化学动力学的差异。总体而言,这项工作不仅强调了电解质性质和温度对电池性能的关键作用,还提出了一种将铝废物重新利用为能源生成组件的可持续策略。此外,这种方法不仅提高了铝废物的价值,还通过利用消费后材料提供了一条可持续能源生成的可扩展途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验