Yu Hong, Wang Jinjin, Jing Hongbo, Wu Chao, Hu Erhai, Xi Shibo, Wang Xiaomei, Fang Zhiyu, Wu Xing-Long, Liang Qinghua, Qi Weihong, Yan Qingyu, Wang Hongqiang, Du Cheng-Feng
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
Sci Bull (Beijing). 2025 Jun 9. doi: 10.1016/j.scib.2025.06.005.
High safety and high energy-density sodium-ion batteries require the promising polyanionic insertion-type cathode possessing fast dis-/charging capability, yet persistent challenges remain in the kinetic optimization to accelerate their intrinsically low Na diffusivity. Exampled by the representative NaV(PO)OF (NVPOF) with considerable theoretical energy density, structural distortion results in a one-dimensional sluggish Na diffusion out of the two-dimensional Na pathway provided structurally. Previous endeavors with Na site or transition-metal site regulation successfully optimize the Na diffusion energy barrier of the available one-dimensional path. However, these substituted elements with non-equivalent valances or sizes further elevate the energy barrier of the other unavailable Na diffusion path. Herein, by defining the independently accessible Na diffusion pathways in the crystallographic structure as Na diffusion degree of freedom (df), we demonstrate broadening df to two in NVPOF by a mild perturb at the dangling site can fundamentally revise the Na diffusion behaviour. As demonstrated by in-situ synchrotron, various spectroscopic techniques, and density functional theory (DFT) modeling, this mild perturb equalizes the Na diffusion energy barriers along a and b directions and enables two-dimensional Na transportation. The as-prepared NVPOF depicts an altered solid-solution phase transition, higher disorder in the framework and dramatically enhanced Na diffusivity, which leads to unprecedentedly high sodium storage properties in half cell (68.6 mAh g at 100 C; 103.3 mAh g after 1300 cycles at 20 C; 1 C = 130 mA g) and full cell (313.8 Wh kg@4063.5 W kg; 113.9 Wh kg@16,397.2 W kg). This study enlightens the valuable role of broadening df in fundamentally maximizing the polyanionic insertion-type performance.
高安全性和高能量密度的钠离子电池需要有前景的聚阴离子插入型阴极,具备快速充/放电能力,但在动力学优化以加速其固有的低钠扩散率方面仍存在持续挑战。以具有相当理论能量密度的代表性NaV(PO)OF(NVPOF)为例,结构畸变导致一维的钠扩散在结构提供的二维钠通道中变得缓慢。先前对钠位点或过渡金属位点的调控成功地优化了可用一维路径的钠扩散能垒。然而,这些具有不等价化合价或尺寸的取代元素进一步提高了另一条不可用钠扩散路径的能垒。在此,通过将晶体结构中独立可及的钠扩散路径定义为钠扩散自由度(df),我们证明通过在悬空位点进行温和扰动将NVPOF中的df拓宽至二维可以从根本上改变钠扩散行为。原位同步加速器、各种光谱技术和密度泛函理论(DFT)建模表明,这种温和扰动使沿a和b方向的钠扩散能垒相等,并实现二维钠传输。所制备的NVPOF呈现出改变的固溶体相变、框架中更高的无序度以及显著增强的钠扩散率,这导致半电池(100 C时为68.6 mAh g;20 C下1300次循环后为103.3 mAh g;1 C = 130 mA g)和全电池(4063.5 W kg时为313.8 Wh kg;16,397.2 W kg时为113.9 Wh kg)中前所未有的高钠存储性能。这项研究揭示了拓宽df在从根本上最大化聚阴离子插入型性能方面的重要作用。