Jain Anupreksha, Tang Acacia Tsz So, Crall James
University of Wisconsin-Madison, Department of Entomology.
Integr Comp Biol. 2025 Jun 24. doi: 10.1093/icb/icaf118.
The majority of flowering plants depend on insect pollination for reproduction and declining pollinator populations pose a threat to biodiversity as well as critical crop pollination services globally. Widespread insecticide use negatively impacts pollinator physiology and behavior even at environmentally-realistic concentrations below lethal toxicity, leading to reduced fitness and long-term population declines. However, significant gaps remain in our understanding of how insecticides affect diverse aspects of behavior and ultimately influence pollinator populations and pollination services. These gaps partly stem from the challenge of quantifying sublethal effects of pesticides on the complex behavioral repertoires of insects. Current methods often focus on a narrow set of behaviors at a time, limiting our ability to capture the comprehensive range of impacts within management-relevant timescales. The emergence of low-cost techniques for high-throughput behavioral quantification, or "ethomics", holds enormous potential to address this knowledge gap. Here, we used automated, computer vision-based tracking implemented on open-source hardware (Raspberry Pis) to investigate the sublethal effects of an emerging "bee-safe" butenolide insecticide (flupyradifurone), as well as a neonicotinoid insecticide (imidacloprid), on bumble bee (Bombus impatiens) behavior. We simultaneously quantified the behavior of uniquely tagged individual workers both within the nest, and during foraging in a semi-field environment, to assess the holistic effects of insecticides under naturalistic conditions. Both insecticides increased mortality risk and altered behavior, but in distinct ways across behavioral contexts. Imidacloprid modified nest behavior by decreasing activity, while flupyradifurone altered spatial behavior within the nest (shifting bees toward the brood). Imidacloprid-but not flupyradifurone-reduced overall foraging activity, while both affected floral preference. Overall, our results highlight the complex potential mechanistic links between sublethal insecticide exposure, behavior, and pollinator health. This work emphasizes the need-and possibility-for rapid and holistic pesticide risk assessment under realistic environmental conditions using high-throughput ethomics, and could inform the development of sustainable agricultural practices and conservation strategies.
大多数开花植物依靠昆虫授粉进行繁殖,而传粉者数量的减少对生物多样性以及全球关键作物的授粉服务构成了威胁。即使在低于致死毒性的环境现实浓度下,广泛使用杀虫剂也会对传粉者的生理和行为产生负面影响,导致其适应性降低和种群长期减少。然而,在我们对杀虫剂如何影响行为的各个方面以及最终如何影响传粉者种群和授粉服务的理解上,仍然存在重大差距。这些差距部分源于量化农药对昆虫复杂行为模式的亚致死效应所面临的挑战。当前的方法往往一次只关注一小部分行为,限制了我们在与管理相关的时间尺度内捕捉全面影响范围的能力。用于高通量行为量化的低成本技术,即“行为组学”的出现,具有巨大潜力来填补这一知识空白。在这里,我们使用基于计算机视觉的自动化跟踪技术,在开源硬件(树莓派)上进行实验,以研究一种新型“对蜜蜂安全”的丁烯内酯类杀虫剂(氟吡呋喃酮)以及一种新烟碱类杀虫剂(吡虫啉)对熊蜂(西方蜜蜂)行为的亚致死效应。我们同时对在蜂巢内以及在半田间环境中觅食的、带有唯一标记的个体工蜂的行为进行量化,以评估在自然条件下杀虫剂的整体影响。两种杀虫剂都增加了死亡风险并改变了行为,但在不同行为背景下方式不同。吡虫啉通过降低活动水平改变了蜂巢内行为,而氟吡呋喃酮改变了蜂巢内的空间行为(使蜜蜂向育雏区域移动)。吡虫啉而非氟吡呋喃酮降低了总体觅食活动,而两者都影响了花卉偏好。总体而言,我们的结果突出了亚致死杀虫剂暴露、行为和传粉者健康之间潜在的复杂机制联系。这项工作强调了在现实环境条件下使用高通量行为组学进行快速和全面农药风险评估的必要性和可能性,并可为可持续农业实践和保护策略的制定提供参考。