Suppr超能文献

利用深度迁移学习提高医学成像中的白血病检测能力。

Enhancing leukemia detection in medical imaging using deep transfer learning.

作者信息

Soladoye Afeez A, Olawade David B, Adeyanju Ibrahim A, Adereni Temitope, Olagunju Kazeem M, Clement David-Olawade Aanuoluwapo

机构信息

Department of Computer Engineering, Federal University, Oye-Ekiti, Nigeria.

Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Department of Public Health, York St John University, London, United Kingdom; School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry CV3 4FJ, United Kingdom.

出版信息

Int J Med Inform. 2025 Nov;203:106023. doi: 10.1016/j.ijmedinf.2025.106023. Epub 2025 Jun 26.

Abstract

BACKGROUND

Acute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, requiring early detection to save lives and reduce the financial burden of advanced-stage treatment. While traditional diagnostic methods are time-consuming and resource-intensive, deep transfer learning offers a computationally efficient alternative for medical image classification.

METHOD

This study employed two widely recognized transfer learning algorithms, VGG-19 and EfficientNet-B3, to detect ALL using a publicly available dataset of 10,661 images from 118 patients. Data preprocessing included resizing, augmentation, and normalization. The models were trained for 100 epochs, with batch sizes of 30 for VGG-19 and 32 for EfficientNet-B3. Evaluation metrics such as accuracy, precision, recall, and F1 score were used to assess model performance. Statistical significance testing was performed using paired t-tests (p < 0.05). Comparative analysis was performed with existing studies to validate the findings.

RESULTS

EfficientNet-B3 significantly outperformed VGG-19, achieving an average accuracy of 96 % compared to 80 % for VGG-19 (p < 0.001). EfficientNet-B3 demonstrated superior performance in handling class imbalance, with the minority class (Hem) achieving precision, recall, and F1 scores of 97 %, 89 %, and 93 %, respectively. VGG-19 struggled with the minority class, achieving lower recall (51 %) and F1 score (62 %). However, dataset limitations including single-source origin may affect generalizability.

CONCLUSION

This study highlights the effectiveness of EfficientNet-B3 as a reliable tool for early ALL detection, offering high accuracy and computational efficiency. Clinical implementation requires addressing computational constraints and integration challenges. Future research could integrate multimodal datasets to identify risk factors and further improve diagnostic accuracy.

摘要

背景

急性淋巴细胞白血病(ALL)是最常见的儿科癌症,需要早期检测以挽救生命并减轻晚期治疗的经济负担。虽然传统诊断方法耗时且资源密集,但深度迁移学习为医学图像分类提供了一种计算高效的替代方法。

方法

本研究采用两种广泛认可的迁移学习算法VGG - 19和EfficientNet - B3,使用来自118名患者的10661张图像的公开可用数据集来检测ALL。数据预处理包括调整大小、增强和归一化。模型训练100个轮次,VGG - 19的批量大小为30,EfficientNet - B3的批量大小为32。使用准确率、精确率、召回率和F1分数等评估指标来评估模型性能。使用配对t检验进行统计显著性检验(p < 0.05)。与现有研究进行比较分析以验证结果。

结果

EfficientNet - B3明显优于VGG - 19,平均准确率达到96%,而VGG - 19为80%(p < 0.001)。EfficientNet - B3在处理类别不平衡方面表现出色,少数类别(Hem)的精确率、召回率和F值分别达到97%、89%和93%。VGG - 19在少数类别上表现不佳,召回率较低(51%),F值为(62%)。然而,包括单源来源在内的数据集限制可能会影响通用性。

结论

本研究强调了EfficientNet - B3作为早期ALL检测可靠工具的有效性,具有高精度和计算效率。临床应用需要解决计算限制和整合挑战。未来研究可以整合多模态数据集以识别风险因素并进一步提高诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验