Ter Bekke Rachel M A, Hohmann Stephan, Xie Jingyang, Grehn Melanie, Verhoeven Karolien, Volders Paul G A, Mihl Casper, Kaya Yeşim Selma, Manninger Martin, Scherr Daniel, Corradini Stefanie, Schweikard Achim, Rademaker Robert, Hoeksema Wiert F, Schiappacasse Luis, Knybel Lukáš, Pruvot Etienne, Postema Pieter G, Peichl Petr, Cvek Jakub, Zeppenfeld Katja, Blanck Oliver, Boda-Heggemann Judit
Department of Cardiology, Maastricht University Medical Center+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
St. Bernhard Krankenhaus, Hildesheim, Germany.
Radiother Oncol. 2025 Sep;210:111004. doi: 10.1016/j.radonc.2025.111004. Epub 2025 Jun 27.
Stereotactic arrhythmia radioablation (STAR) for ventricular tachycardia (VT) is a non-invasive treatment modality to reduce the VT burden by delivering a single high radiation dose to the arrhythmogenic substrate. Identification and delineation of the arrhythmogenic substrate, definition of the radiation target, and transfer of this target across different imaging modalities from the invasive electroanatomic map (EAM) to the planning computed tomography (CT) scan are key to the success of therapeutic radiation. The VT substrate is identified using EAM data and co-localized with radiological correlates of the ventricular scar. Precise transfer to the non-ECG-gated treatment planning CT is essential for safe and effective STAR delivery. Current challenges include translating the endocardial or epicardial EAM surface target into a 3D cardiac target volume (CTV), reconciling different acquisition methods (e.g., (exhale-gated) EAM, contrast-enhanced ECG-gated CT angiography, and non-gated non-contrast planning CT), and achieving accurate CTV transfer using multi-modal image integration. Early approaches relied on manual delineation using side-by-side EAM and CT rendering, leading to poor reproducibility and potential treatment failure. Emerging (semi)auto-segmentation software based on the American Heart Association (AHA) 17-segment left ventricular model offers promise but lacks standardized weighing of identified segments and methods for handling partially involved segments. More recently, 2D-to-3D and 3D-to-3D target transfer methods, including commercial and in-house computer-aided tools, have been developed to address these difficulties. Currently, a standardized workflow has not been established. This review addresses the need to standardize CTV definitions and transfer workflows, assessing available tools and proposing quality assurance measures based on recommendations of the STOPSTORM.eu consortium.
立体定向心律失常射频消融术(STAR)用于治疗室性心动过速(VT),是一种通过向心律失常基质单次高剂量辐射来减轻VT负荷的非侵入性治疗方式。识别和描绘心律失常基质、定义辐射靶点以及将该靶点从侵入性电解剖图(EAM)跨不同成像模态转移至计划计算机断层扫描(CT),是治疗性辐射成功的关键。使用EAM数据识别VT基质,并将其与心室瘢痕的放射学关联共同定位。精确转移至非心电图门控的治疗计划CT对于安全有效地实施STAR至关重要。当前的挑战包括将心内膜或心外膜EAM表面靶点转化为三维心脏靶体积(CTV)、协调不同的采集方法(如(呼气门控)EAM、对比增强心电图门控CT血管造影和非门控非对比计划CT),以及使用多模态图像融合实现准确的CTV转移。早期方法依赖于使用并排的EAM和CT渲染进行手动描绘,导致可重复性差且可能治疗失败。基于美国心脏协会(AHA)17段左心室模型的新兴(半)自动分割软件有前景,但缺乏对已识别段的标准化加权以及处理部分受累段的方法。最近,已开发出二维到三维和三维到三维的靶点转移方法,包括商业和内部计算机辅助工具,以解决这些困难。目前,尚未建立标准化工作流程。本综述阐述了标准化CTV定义和转移工作流程的必要性,评估了可用工具,并根据STOPSTORM.eu联盟的建议提出了质量保证措施。