Cohen Yaron S, Sadhujan Sumesh, Rajput Sonal, Shitrit Yakov, Iliashevsky Olga
Department of Chemistry, Nuclear Research Centre-Negev, P.O.B. 9001, Beer-Sheva, 84190, Israel.
Department of Chemical Engineering, Ben Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
Chempluschem. 2025 Sep;90(9):e202500208. doi: 10.1002/cplu.202500208. Epub 2025 Aug 6.
The production of efficient catalysts is mandatory to attain superior catalytic performance. Once the catalyst deposition mechanism is clear, one can define the optimal physical and chemical conditions of the deposition process, such as electrolyte composition, reduction potential, current operation mode, the result chemical composition of the catalyst, its structure, and morphology. Here, the electrodeposition mechanism of tin catalysts in dimethyformamide of a thiolated tin complex under potential control for CO reduction to formate is investigated. First, a new synthesis route is presented for a tin thiolate precursor, Bis(1,2-ethanedihiolate)Sn(IV). Second, a potential-controlled deposition process of tin from dimethylformamide solutions of this precursor is discussed, with the intention of deposition of tin catalysts on acid-sensitive substrates, such as carbon-composed gas-diffusion-layers. Scan-rate cyclic-voltammetry, scan rate mass-potential, and chronoamperometry measurements expose irregular current-potential and mass change phenomena along electrodeposition, which reflect a complicated potential-dependent mechanism composed of redox and chemical reactions. Disproportionation and comproportionation reactions of tin are indicated by the holistic picture of the potential and time-dependent mass measurements and complementary structure and morphology analysis, suggested as playing an important role in the deposition mechanism of tin. The complex mechanism is untied and the deposition conditions are defined accordingly, in order to deposit tin catalysts with high faradaic efficiency (FE= ≈100% with Sn-coated Cu coupons). In practice, tin is electrodeposited potentiostatically from the thiolated tin complex-DMF solution on carbon-based gas-diffusion-layer electrodes. Chronoamperometry measurements of electrochemical reduction of CO to formate in the gas-diffusion-electrode cell configuration presented FE > 92% and over 170 mA cm along 1 h continuous CO gas flow reduction.
为了获得优异的催化性能,制备高效催化剂是必不可少的。一旦明确了催化剂的沉积机制,就可以确定沉积过程的最佳物理和化学条件,如电解质组成、还原电位、电流操作模式、催化剂的最终化学成分、结构和形态。在此,研究了在电位控制下,硫醇化锡配合物在二甲基甲酰胺中电沉积锡催化剂用于将CO还原为甲酸盐的机制。首先,提出了一种新的硫醇锡前驱体双(1,2-乙二硫醇)锡(IV)的合成路线。其次,讨论了从该前驱体的二甲基甲酰胺溶液中进行锡的电位控制沉积过程,目的是将锡催化剂沉积在对酸敏感的基底上,如碳基气体扩散层。扫描速率循环伏安法、扫描速率质量-电位法和计时电流法测量揭示了电沉积过程中不规则的电流-电位和质量变化现象,这反映了一个由氧化还原和化学反应组成的复杂的电位依赖机制。锡的歧化和反歧化反应通过电位和时间依赖的质量测量以及互补的结构和形态分析的整体情况得以表明,被认为在锡的沉积机制中起重要作用。解开了复杂的机制并相应地确定了沉积条件,以便沉积具有高法拉第效率的锡催化剂(用镀锡铜试样时FE≈100%)。在实际应用中,锡从硫醇化锡配合物-二甲基甲酰胺溶液中恒电位电沉积在碳基气体扩散层电极上。在气体扩散电极电池配置中对CO电化学还原为甲酸盐的计时电流法测量表明,在1 h连续CO气流还原过程中,FE>92%且超过170 mA cm。