Chen Xing, Liu Kun, Wang Pengxiang, Huai Xiangyu, Wang Xiang, Zhao Zhenyang, Yan Rui, Li Shuang
College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China.
ChemSusChem. 2025 Jun 29:e2500730. doi: 10.1002/cssc.202500730.
The sluggish sulfur redox kinetics and severe polysulfide shuttling significantly hinder the practical performance of lithium-sulfur batteries (LSBs). While single-atom catalysts have shown promise in capturing and catalyzing sulfur species, their catalytic activity still requires further enhancement for real-world applications. Inspired by natural superoxide dismutase, which utilizes dual-atom catalytic sites and a synergistic mechanism for rapid substrate conversion, a bioinspired Fe/Mn dual-atom catalyst (FeMn-DAC) anchored on nanochannel-decorated carbon to improve sulfur redox kinetics and enable high-performance LSBs is developed. Experimental results reveal that LSBs equipped with FeMn-DACs electrocatalyst exhibit the fastest nucleation (369.3 mAh g) and dissolution (226.3 mAh g) kinetics of LiS. The battery demonstrates outstanding rate performance, delivering a reversible capacity of 670 mAh g at 2.0C, coupled with an ultralow capacity decay rate of 0.09% over 500 cycles. Even under high-sulfur loadings of 2.79and 3.67 mg cm, the FeMn-DACs-based cathodes achieve excellent area capacities of 2.06 and 2.69 mAh cm, respectively. This work provides a new perspective for designing advanced DACs tailored for LSBs.
缓慢的硫氧化还原动力学和严重的多硫化物穿梭效应显著阻碍了锂硫电池(LSB)的实际性能。虽然单原子催化剂在捕获和催化硫物种方面已展现出前景,但其催化活性在实际应用中仍需进一步提高。受天然超氧化物歧化酶的启发,其利用双原子催化位点和协同机制实现快速底物转化,开发了一种锚定在纳米通道修饰碳上的仿生铁/锰双原子催化剂(FeMn-DAC),以改善硫氧化还原动力学并实现高性能的锂硫电池。实验结果表明,配备FeMn-DACs电催化剂的锂硫电池展现出最快的LiS成核(369.3 mAh g)和溶解(226.3 mAh g)动力学。该电池表现出出色的倍率性能,在2.0C下具有670 mAh g的可逆容量,在500次循环中的容量衰减率超低,为0.09%。即使在2.79和3.67 mg cm的高硫负载下,基于FeMn-DACs的阴极分别实现了2.06和2.69 mAh cm的优异面积容量。这项工作为设计适用于锂硫电池的先进双原子催化剂提供了新的视角。