Shi Shitao, Wang Yuanyuan, Ye Zewei, Xie Hongxia, Liu Chencong, Liao Jiaqi, Zhao Dawei, Sun Qingfeng, Shamshina Julia L, Shen Xiaoping
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, 110142, China.
Adv Sci (Weinh). 2025 Sep;12(33):e14301. doi: 10.1002/advs.202414301. Epub 2025 Jun 29.
While hydrogels are ideal building blocks for fabricating next-generation epidermal electronics to acquire high-fidelity electrical signals induced by motion and physiological activities, an unresolved issue remains: the differentiation and selection of sensing modes in hydrogel sensors. The novel design leverages numerous conductive nanosheets, randomly arranged in a series-parallel configuration, embedded within a highly compliant dielectric hydrogel. For the nanosheets, poly(3,4-ethylenedioxythiophene) (PEDOT) is deposited on the surface of sulfonated cellulose nanosheets (SCNS) to function as microelectrodes (PEDOT@SCNS). The resulting nanosheet-based hydrogel (NSH) demonstrates remarkable stretchability (1356%), excellent adaptability (storage modulus of 102 Pa), and self-adhesiveness (21.7 kPa on pigskin). The nanosheet microelectrodes enable the formation of both microcapacitor arrays and conductive paths within the ultrasoft hydrogel, facilitating the construction of high-fidelity capacitive sensors and bioelectrodes for the real-time monitoring and classification of human activities and physiological states, respectively. This NSH, which significantly reduces skin-interfacial impedance, has demonstrated strong potential as candidate sensors for advanced applications in EMG, facial nerve monitoring, ECG, and brain activity monitoring, achieving reduced RMS noise (9.7 µV) and minimal motion artifacts.
虽然水凝胶是制造下一代表皮电子器件以获取由运动和生理活动引起的高保真电信号的理想构建块,但一个尚未解决的问题仍然存在:水凝胶传感器中传感模式的区分和选择。这种新颖的设计利用了大量以串并联配置随机排列的导电纳米片,将其嵌入高度柔顺的介电水凝胶中。对于这些纳米片,聚(3,4 - 乙撑二氧噻吩)(PEDOT)沉积在磺化纤维素纳米片(SCNS)表面以充当微电极(PEDOT@SCNS)。由此产生的基于纳米片的水凝胶(NSH)表现出显著的拉伸性(1356%)、出色的适应性(储能模量为102 Pa)和自粘性(在猪皮上为21.7 kPa)。纳米片微电极能够在超软水凝胶中形成微电容器阵列和导电路径,分别有助于构建用于实时监测和分类人类活动及生理状态的高保真电容式传感器和生物电极。这种显著降低皮肤界面阻抗的NSH,已显示出作为肌电图、面神经监测、心电图和脑活动监测等先进应用候选传感器的强大潜力,实现了降低的均方根噪声(9.7 µV)和最小的运动伪影。