Zhang Yu, Zhao Hongyan, Zhu Junjie, Chen Zitao, Liu Xiangjian, Zhang Zhenbao, Shi Lei, Tian Xuezeng, Jiang Heqing, Zhu Yongfa, Zhu Jiawei
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202511546. doi: 10.1002/anie.202511546. Epub 2025 Jul 9.
Cu-based perovskite oxides feature significant potential for CO electroreduction (CORR) but encounter insufficient C selectivity primarily due to the inherent symmetric charge distribution at Cu sites hindering asymmetric C─C coupling. Here we report a unique type of Cu-based metallic perovskite oxides with asymmetric, corner-sharing CuO and CuO motifs to boost asymmetric C─C coupling for efficient CO-to-C conversion. For the proof-of-concept catalyst of LaBaCuO, their ordered, corner-sharing CuO pyramids and CuO octahedra feature localized charge density redistribution, creating abundant asymmetric Cu─Cu dual sites with distinct electronic structures and also strengthening Cu─O covalency. In CORR (in both alkaline and acidic media), LaBaCuO greatly promotes C formation while producing negligible CH, showing a Faradaic efficiency ratio (C to CH) of up to 180. Moreover, LaBaCuO, achieving a remarkable C Faradaic efficiency of 85.0% at 400 mA cm, together with well-boosted stability, outperforms previously reported Cu-based-perovskite catalysts. Our experiments and theoretical calculations attribute the superb performance mainly to the following factors: the asymmetric CuO─CuO sites promoting differentiated *CO adsorption/hydrogenation to favor asymmetric *CO─*CHO coupling; the strengthened Cu─O covalency stabilizing the Cu sites. Extending this strategy to two additional pairs of Cu-based perovskite oxides generates similarly successful results.
铜基钙钛矿氧化物在CO电还原(CORR)方面具有巨大潜力,但主要由于铜位点固有的对称电荷分布阻碍了不对称C─C偶联,导致C选择性不足。在此,我们报道了一种独特类型的铜基金属钙钛矿氧化物,其具有不对称的、角共享的CuO和CuO结构单元,以促进不对称C─C偶联,实现高效的CO到C的转化。对于LaBaCuO的概念验证催化剂,其有序的、角共享的CuO金字塔和CuO八面体具有局部电荷密度重新分布,产生了大量具有不同电子结构的不对称Cu─Cu双位点,同时增强了Cu─O共价性。在CORR(碱性和酸性介质中)中,LaBaCuO极大地促进了C的形成,同时产生可忽略不计的CH,法拉第效率比(C与CH)高达180。此外,LaBaCuO在400 mA cm下实现了85.0%的显著C法拉第效率,同时稳定性得到显著提高,优于先前报道的铜基钙钛矿催化剂。我们的实验和理论计算将优异性能主要归因于以下因素:不对称的CuO─CuO位点促进了不同的CO吸附/氢化,有利于不对称的CO─*CHO偶联;增强的Cu─O共价性稳定了铜位点。将该策略扩展到另外两对铜基钙钛矿氧化物也产生了类似的成功结果。