Chen Youpeng, Sun Junquan, Chen Yabang, Li Enzhong, Lu Jiancai, Tang Huanhua, Xie Yifei, Zhang Jiana, Peng Lesi, Wu Haojie, Cheng Zhangkai J, Sun Baoqing
Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Guangzhou National Laboratory, Guangzhou, Guangdong Province, China.
World Allergy Organ J. 2025 Jun 14;18(7):101074. doi: 10.1016/j.waojou.2025.101074. eCollection 2025 Jul.
Acute asthma exacerbations (AAEs) are a leading cause of asthma-related morbidity and mortality, especially in resource-limited settings where pulmonary function tests are unavailable or when patients are unable to cooperate with testing. This study aimed to develop and validate a diagnostic model for AAE using routine blood parameters through machine learning techniques.
We developed a machine learning-based diagnostic model using routine blood test parameters. Data from 23,013 asthma patients treated at the First Affiliated Hospital of Guangzhou Medical University were analyzed. Significant variables were identified through logistic regression, and 12 machine learning algorithms were used to construct diagnostic models, which were evaluated using Receiver Operating Characteristic (ROC) analysis, calibration, and Decision Curve Analysis (DCA).
The Generalized Linear Model Boosting combined with Random Forest (glmBoost + RF) algorithm using 14 variables achieved comparable performance (Area Under the Curve [AUC] = 0.981) to the more complex Least Absolute Shrinkage and Selection Operator combined with Random Forest (Lasso + RF) algorithm using 25 variables (AUC = 0.985). Both models demonstrated excellent calibration and consistent performance across different demographic subgroups. DCA confirmed superior clinical utility compared to conventional strategies.
This machine learning model provides an efficient and practical tool for detecting AAE using routine blood parameters, offering potential value in clinical practice, especially in resource-limited settings.
Not applicable.
急性哮喘加重(AAE)是哮喘相关发病和死亡的主要原因,尤其是在资源有限的环境中,那里无法进行肺功能测试或患者无法配合测试。本研究旨在通过机器学习技术开发并验证一种使用常规血液参数诊断AAE的模型。
我们使用常规血液检测参数开发了一种基于机器学习的诊断模型。分析了广州医科大学附属第一医院治疗的23013例哮喘患者的数据。通过逻辑回归确定显著变量,并使用12种机器学习算法构建诊断模型,使用受试者工作特征(ROC)分析、校准和决策曲线分析(DCA)对其进行评估。
使用14个变量的广义线性模型增强与随机森林(glmBoost + RF)算法实现了与使用25个变量的更复杂的最小绝对收缩和选择算子与随机森林(Lasso + RF)算法相当的性能(曲线下面积[AUC] = 0.981)(AUC = 0.985)。两种模型在不同人口亚组中均表现出出色的校准和一致的性能。DCA证实与传统策略相比具有更高的临床实用性。
这种机器学习模型为使用常规血液参数检测AAE提供了一种高效实用的工具,在临床实践中具有潜在价值,尤其是在资源有限的环境中。
不适用。