文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的时间和光谱瞬发伽马射线信息整合用于质子射程验证。

Machine-learning-based integration of temporal and spectral prompt gamma-ray information for proton range verification.

作者信息

Kieslich Aaron, Schellhammer Sonja M, Zwanenburg Alex, Kögler Toni, Löck Steffen

机构信息

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.

出版信息

Phys Imaging Radiat Oncol. 2025 Jun 2;35:100788. doi: 10.1016/j.phro.2025.100788. eCollection 2025 Jul.


DOI:10.1016/j.phro.2025.100788
PMID:40584996
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12198029/
Abstract

BACKGROUND AND PURPOSE: Prompt gamma-ray timing (PGT) and prompt gamma-ray spectroscopy (PGS) are non-invasive techniques for dose delivery monitoring in proton radiotherapy. Integrating PGT and PGS into a unified data analysis framework may improve proton range verification by incorporating both temporal and spectral information from prompt gamma-ray events. This study evaluates the effectiveness of this integration for enhancing the accuracy of proton range verification using machine-learning. MATERIAL AND METHODS: A homogeneous phantom was irradiated with 162 and 225 MeV static and scanned proton beams. Air cavities of 5, 10 and 20 mm were introduced to simulate anatomical variations. The energy and time of arrival of prompt gamma rays were measured using a PGT detector. 2-dimensional time-energy spectra were extracted for 1,440 proton spots. Different feature sets (energy-only, time-only, energy-restricted time, image) were computed. These feature sets were used by four different machine-learning models to predict range shifts. Model performance was assessed using the root mean square error (RMSE). RESULTS: Time-only and combined time-energy feature sets exhibited good performance with RMSE values of 3 to 4 mm, consistent with previously developed models. Energy-only and image features led to poorer performance with RMSE values exceeding 5 mm. The integration of energy-only features did not improve prediction accuracy compared to exclusively using time-only features. CONCLUSION: While spectral information did not contribute additional value for determining proton beam range shifts in the investigated setup, the findings show that temporal information alone is sufficient to perform accurate proton range verification.

摘要

背景与目的:瞬发伽马射线计时(PGT)和瞬发伽马射线光谱学(PGS)是质子放射治疗中用于剂量输送监测的非侵入性技术。将PGT和PGS整合到一个统一的数据分析框架中,通过纳入瞬发伽马射线事件的时间和光谱信息,可能会改善质子射程验证。本研究评估了这种整合对于使用机器学习提高质子射程验证准确性的有效性。 材料与方法:用162和225 MeV的静态扫描质子束照射均匀体模。引入5、10和20 mm的气腔以模拟解剖学变异。使用PGT探测器测量瞬发伽马射线的能量和到达时间。提取了1440个质子点的二维时间-能量谱。计算了不同的特征集(仅能量、仅时间、能量限制时间、图像)。这些特征集被四个不同的机器学习模型用于预测射程偏移。使用均方根误差(RMSE)评估模型性能。 结果:仅时间和组合的时间-能量特征集表现出良好的性能,RMSE值为3至4 mm,与先前开发的模型一致。仅能量和图像特征导致性能较差,RMSE值超过5 mm。与仅使用时间特征相比,仅能量特征的整合并未提高预测准确性。 结论:虽然在研究的设置中,光谱信息对于确定质子束射程偏移没有额外价值,但研究结果表明仅时间信息就足以进行准确的质子射程验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/11f9a4bb4c07/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/852362ac3a11/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/ff3a4dee932a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/900d0f54a22c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/11f9a4bb4c07/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/852362ac3a11/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/ff3a4dee932a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/900d0f54a22c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8c/12198029/11f9a4bb4c07/gr4.jpg

相似文献

[1]
Machine-learning-based integration of temporal and spectral prompt gamma-ray information for proton range verification.

Phys Imaging Radiat Oncol. 2025-6-2

[2]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[5]
Single and multitarget stereotactic radiosurgery (SRS) with single isocenter in the treatment of multiple brain metastases (BM): institutional experience.

Clin Transl Oncol. 2025-1-15

[6]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[9]
Does Augmenting Irradiated Autografts With Free Vascularized Fibula Graft in Patients With Bone Loss From a Malignant Tumor Achieve Union, Function, and Complication Rate Comparably to Patients Without Bone Loss and Augmentation When Reconstructing Intercalary Resections in the Lower Extremity?

Clin Orthop Relat Res. 2025-6-26

[10]
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence.

Int J Radiat Oncol Biol Phys. 2025-7-15

本文引用的文献

[1]
Machine learning approach for proton range verification using real-time prompt gamma imaging with Compton cameras: addressing the total deposited energy information gap.

Phys Med Biol. 2024-3-21

[2]
Detectability of Anatomical Changes With Prompt-Gamma Imaging: First Systematic Evaluation of Clinical Application During Prostate-Cancer Proton Therapy.

Int J Radiat Oncol Biol Phys. 2023-11-1

[3]
Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data.

Med Phys. 2023-1

[4]
Sustainable data analysis with Snakemake.

F1000Res. 2021

[5]
Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection.

Sci Rep. 2021-4-29

[6]
Radiomics in medical imaging-"how-to" guide and critical reflection.

Insights Imaging. 2020-8-12

[7]
The SiFi-CC project - Feasibility study of a scintillation-fiber-based Compton camera for proton therapy monitoring.

Phys Med. 2020-8

[8]
A spectral reconstruction algorithm for two-plane Compton cameras.

Phys Med Biol. 2020-1-17

[9]
Processing of prompt gamma-ray timing data for proton range measurements at a clinical beam delivery.

Phys Med Biol. 2019-5-21

[10]
A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy.

Phys Med Biol. 2018-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索