文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从逼真模拟的瞬发伽马成像数据中自动检测和分类质子治疗中的治疗偏差。

Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data.

机构信息

OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.

出版信息

Med Phys. 2023 Jan;50(1):506-517. doi: 10.1002/mp.15975. Epub 2022 Nov 29.


DOI:10.1002/mp.15975
PMID:36102783
Abstract

BACKGROUND: A clinical study regarding the potential of range verification in proton therapy (PT) by prompt gamma imaging (PGI) is carried out at our institution. Manual interpretation of the detected spot-wise range shift information is time-consuming, highly complex, and therefore not feasible in a broad routine application. PURPOSE: Here, we present an approach to automatically detect and classify treatment deviations in realistically simulated PGI data for head-and-neck cancer (HNC) treatments using convolutional neural networks (CNNs) and conventional machine learning (ML) approaches. METHODS: For 12 HNC patients and 1 anthropomorphic head phantom (n = 13), pencil beam scanning (PBS) treatment plans were generated, and 1 field per plan was assumed to be monitored with a PGI slit camera system. In total, 386 scenarios resembling different relevant or non-relevant treatment deviations were simulated on planning and control CTs and manually classified into 7 classes: non-relevant changes (NR) and relevant changes (RE) triggering treatment intervention due to range prediction errors (±RP), setup errors in beam direction (±SE), anatomical changes (AC), or a combination of such errors (CB). PBS spots with reliable PGI information were considered with their nominal Bragg peak position for the generation of two 3D spatial maps of 16 × 16 × 16 voxels containing PGI-determined range shift and proton number information. Three complexity levels of simulated PGI data were investigated: (I) optimal PGI data, (II) realistic PGI data with simulated Poisson noise based on the locally delivered proton number, and (III) realistic PGI data with an additional positioning uncertainty of the slit camera following an experimentally determined distribution. For each complexity level, 3D-CNNs were trained on a data subset (n = 9) using patient-wise leave-one-out cross-validation and tested on an independent test cohort (n = 4). Both the binary task of detecting RE and the multi-class task of classifying the underlying error source were investigated. Similarly, four different conventional ML classifiers (logistic regression, multilayer perceptron, random forest, and support vector machine) were trained using five previously established handcrafted features extracted from the PGI data and used for performance comparison. RESULTS: On the test data, the CNN ensemble achieved a binary accuracy of 0.95, 0.96, and 0.93 and a multi-class accuracy of 0.83, 0.81, and 0.76 for the complexity levels (I), (II), and (III), respectively. In the case of binary classification, the CNN ensemble detected treatment deviations in the most realistic scenario with a sensitivity of 0.95 and a specificity of 0.88. The best performing ML classifiers showed a similar test performance. CONCLUSIONS: This study demonstrates that CNNs can reliably detect relevant changes in realistically simulated PGI data and classify most of the underlying sources of treatment deviations. The CNNs extracted meaningful features from the PGI data with a performance comparable to ML classifiers trained on previously established handcrafted features. These results highlight the potential of a reliable, automatic interpretation of PGI data for treatment verification, which is highly desired for a broad clinical application and a prerequisite for the inclusion of PGI in an automated feedback loop for online adaptive PT.

摘要

背景:我们机构正在进行一项关于通过瞬发伽马成像(PGI)在质子治疗(PT)中进行范围验证的临床研究。检测到的点状范围移位信息的手动解释既耗时又复杂,因此在广泛的常规应用中不可行。

目的:在这里,我们提出了一种使用卷积神经网络(CNN)和传统机器学习(ML)方法自动检测和分类头颈部癌症(HNC)治疗中真实模拟的 PGI 数据中的治疗偏差的方法。

方法:对于 12 名 HNC 患者和 1 个人体头部模型(n=13),生成了铅笔束扫描(PBS)治疗计划,假设每个计划的 1 个射野都将使用 PGI 狭缝相机系统进行监测。总共在计划和对照 CT 上模拟了 386 种不同的相关或非相关治疗偏差情况,并手动将其分类为 7 个类别:非相关变化(NR)和由于范围预测错误(±RP)、束方向的设置误差(±SE)、解剖变化(AC)或这些误差的组合(CB)而触发治疗干预的相关变化(RE)。具有可靠 PGI 信息的 PBS 点被认为是它们的标称布拉格峰位置,用于生成两个包含 PGI 确定的范围移位和质子数信息的 16×16×16 体素的 3D 空间图。研究了三种复杂程度的模拟 PGI 数据:(I)最佳 PGI 数据,(II)基于局部递送的质子数模拟的具有模拟泊松噪声的现实 PGI 数据,以及(III)具有根据实验确定的分布的狭缝相机的附加定位不确定性的现实 PGI 数据。对于每个复杂级别,使用患者特定的留一交叉验证在数据子集(n=9)上训练 3D-CNN,并在独立的测试队列(n=4)上进行测试。研究了检测 RE 的二元任务和分类潜在误差源的多类任务。同样,使用从 PGI 数据中提取的五个先前建立的手工制作特征,使用四种不同的传统 ML 分类器(逻辑回归、多层感知机、随机森林和支持向量机)进行训练,并进行性能比较。

结果:在测试数据上,CNN 集成在复杂度级别(I)、(II)和(III)上分别达到了 0.95、0.96 和 0.93 的二元精度和 0.83、0.81 和 0.76 的多类精度。在二进制分类的情况下,CNN 集成以 0.95 的灵敏度和 0.88 的特异性检测到最现实场景中的治疗偏差。表现最好的 ML 分类器表现出类似的测试性能。

结论:这项研究表明,CNN 可以可靠地检测真实模拟的 PGI 数据中的相关变化,并对大多数潜在的治疗偏差源进行分类。CNN 从 PGI 数据中提取了有意义的特征,其性能可与基于先前建立的手工制作特征训练的 ML 分类器相媲美。这些结果突出了可靠、自动解释 PGI 数据进行治疗验证的潜力,这对于广泛的临床应用非常重要,也是将 PGI 纳入在线自适应 PT 的自动反馈循环的前提条件。

相似文献

[1]
Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data.

Med Phys. 2023-1

[2]
Classification of the source of treatment deviation in proton therapy using prompt-gamma imaging information.

Med Phys. 2020-10

[3]
Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification.

Radiother Oncol. 2017-11-4

[4]
Detectability of Anatomical Changes With Prompt-Gamma Imaging: First Systematic Evaluation of Clinical Application During Prostate-Cancer Proton Therapy.

Int J Radiat Oncol Biol Phys. 2023-11-1

[5]
Range shift verification in spot scanning proton therapy using gamma electron vertex imaging.

Med Phys. 2024-3

[6]
First-In-Human Validation of CT-Based Proton Range Prediction Using Prompt Gamma Imaging in Prostate Cancer Treatments.

Int J Radiat Oncol Biol Phys. 2021-11-15

[7]
Accounting for prompt gamma emission and detection for range verification in proton therapy treatment planning.

Phys Med Biol. 2021-2-16

[8]
A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes.

Phys Med Biol. 2020-4-29

[9]
Sensitivity study of prompt gamma imaging of scanned beam proton therapy in heterogeneous anatomies.

Radiother Oncol. 2015-11-27

[10]
Requirements for a Compton camera for in vivo range verification of proton therapy.

Phys Med Biol. 2017-4-7

引用本文的文献

[1]
Recent advances in applying machine learning to proton radiotherapy.

Biomed Phys Eng Express. 2025-7-23

[2]
Machine-learning-based integration of temporal and spectral prompt gamma-ray information for proton range verification.

Phys Imaging Radiat Oncol. 2025-6-2

[3]
Feasibility of prompt gamma verification for cone-beam computed tomography-based online adaptive proton therapy.

Phys Imaging Radiat Oncol. 2025-5-10

[4]
Partial adaptation for online-adaptive proton therapy triggered by during-delivery treatment verification: Feasibility study on prostate cancer treatments.

Phys Imaging Radiat Oncol. 2025-3-21

[5]
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction.

Phys Med Biol. 2024-4-3

[6]
Potential margin reduction in prostate cancer proton therapy with prompt gamma imaging for online treatment verification.

Phys Imaging Radiat Oncol. 2023-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索