Suppr超能文献

基于三维剂量、CT和分割的头颈部癌患者放疗后晚期吞咽困难的深度学习NTCP模型

Deep learning NTCP model for late dysphagia after radiotherapy for head and neck cancer patients based on 3D dose, CT and segmentations.

作者信息

de Vette S P M, Neh H, van der Hoek L, MacRae D C, Chu H, Gawryszuk A, Steenbakkers R J H M, van Ooijen P M A, Fuller C D, Hutcheson K A, Langendijk J A, Sijtsema N M, van Dijk L V

机构信息

Department of Radiotherapy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, USA.

出版信息

medRxiv. 2025 Jun 20:2025.06.20.25329926. doi: 10.1101/2025.06.20.25329926.

Abstract

BACKGROUND & PURPOSE –: Late radiation-associated dysphagia after head and neck cancer (HNC) significantly impacts patient's health and quality of life. Conventional normal tissue complication probability (NTCP) models use discrete dose parameters to predict toxicity risk but fail to fully capture the complexity of this side effect. Deep learning (DL) offers potential improvements by incorporating 3D dose data for all anatomical structures involved in swallowing. This study aims to enhance dysphagia prediction with 3D DL NTCP models compared to conventional NTCP models.

MATERIALS & METHODS –: A multi-institutional cohort of 1484 HNC patients was used to train and validate a 3D DL model (Residual Network) incorporating 3D dose distributions, organ-at-risk segmentations, and CT scans, with or without patient- or treatment-related data. Predictions of grade ≥2 dysphagia (CTCAEv4) at six months post-treatment were evaluated using area under the curve (AUC) and calibration curves. Results were compared to a conventional NTCP model based on pre-treatment dysphagia, tumour location, and mean dose to swallowing organs. Attention maps highlighting regions of interest for individual patients were assessed.

RESULTS –: DL models outperformed the conventional NTCP model in both the independent test set (AUC=0.80-0.84 versus 0.76) and external test set (AUC=0.73-0.74 versus 0.63) in AUC and calibration. Attention maps showed a focus on the oral cavity and superior pharyngeal constrictor muscle.

CONCLUSION –: DL NTCP models performed better than the conventional NTCP model, suggesting the benefit of using 3D-input over the conventional discrete dose parameters. Attention maps highlighted relevant regions linked to dysphagia, supporting the utility of DL for improved predictions.

摘要

背景与目的

头颈部癌(HNC)放疗后迟发性吞咽困难对患者健康和生活质量有显著影响。传统的正常组织并发症概率(NTCP)模型使用离散剂量参数来预测毒性风险,但未能充分捕捉这种副作用的复杂性。深度学习(DL)通过纳入吞咽相关所有解剖结构的三维剂量数据,有望带来改进。本研究旨在与传统NTCP模型相比,用三维DL NTCP模型提高吞咽困难预测能力。

材料与方法

使用一个多机构队列的1484例HNC患者来训练和验证一个三维DL模型(残差网络),该模型纳入了三维剂量分布、危及器官分割和CT扫描,有或没有患者或治疗相关数据。使用曲线下面积(AUC)和校准曲线评估治疗后六个月时≥2级吞咽困难(CTCAEv4)的预测情况。将结果与基于治疗前吞咽困难、肿瘤位置和吞咽器官平均剂量的传统NTCP模型进行比较。评估突出个体患者感兴趣区域的注意力图。

结果

在独立测试集(AUC = 0.80 - 0.84对0.76)和外部测试集(AUC = 0.73 - 0.74对0.63)中,DL模型在AUC和校准方面均优于传统NTCP模型。注意力图显示关注口腔和咽上缩肌。

结论

DL NTCP模型比传统NTCP模型表现更好,表明使用三维输入优于传统离散剂量参数。注意力图突出了与吞咽困难相关的区域,支持DL在改进预测方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcc9/12204244/3718bb328800/nihpp-2025.06.20.25329926v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验