Shah Rishi, Moradi Mousa, Eslami Sedigheh, Fujita Asahi, Aziz Kanza, Bineshfar Niloufar, Elze Tobias, Eslami Mohammad, Kazeminasab Saber, Liebman Daniel, Rasouli Saeid, Vu Daniel, Wang Mengyu, Yohannan Jithin, Zebardast Nazlee
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA.
Hasso Plattner Institute, Potsdam, Germany.
medRxiv. 2025 Jun 9:2025.06.08.25329151. doi: 10.1101/2025.06.08.25329151.
Glaucoma is a leading cause of irreversible blindness worldwide, with early intervention often being crucial. Research into the underpinnings of glaucoma often relies on electronic health records (EHRs) to identify patients with glaucoma and their subtypes. However, current methods for identifying glaucoma patients from EHRs are often inaccurate or infeasible at scale, relying on International Classification of Diseases (ICD) codes or manual chart reviews. To address this limitation, we introduce (1) OphthaBERT, a powerful general clinical ophthalmology language model trained on over 2 million diverse clinical notes, and (2) a fine-tuned variant of OphthaBERT that automatically extracts binary and subtype glaucoma diagnoses from clinical notes. The base OphthaBERT model is a robust encoder, outperforming state-of-the-art clinical encoders in masked token prediction on out-of-distribution ophthalmology clinical notes and binary glaucoma classification with limited data. We report significant binary classification performance improvements in low-data regimes (p < 0.001, Bonferroni corrected). OphthaBERT is also able to achieve superior classification performance for both binary and subtype diagnosis, outperforming even fine-tuned large decoder-only language models at a fraction of the computational cost. We demonstrate a 0.23-point increase in macro-F1 for subtype diagnosis over ICD codes and strong binary classification performance when externally validated at Wilmer Eye Institute. OphthaBERT provides an interpretable, equitable framework for general ophthalmology language modeling and automated glaucoma diagnosis.
青光眼是全球不可逆性失明的主要原因,早期干预往往至关重要。对青光眼发病机制的研究通常依赖电子健康记录(EHR)来识别青光眼患者及其亚型。然而,目前从EHR中识别青光眼患者的方法在大规模应用时往往不准确或不可行,这些方法依赖于国际疾病分类(ICD)编码或人工病历审查。为解决这一局限性,我们引入了(1)OphthaBERT,这是一个强大的通用临床眼科语言模型,基于超过200万份不同的临床记录进行训练,以及(2)OphthaBERT的一个微调变体,它能从临床记录中自动提取青光眼的二元诊断和亚型诊断。基础OphthaBERT模型是一个强大的编码器,在对分布外的眼科临床记录进行掩码令牌预测以及在数据有限的情况下进行青光眼二元分类方面,优于当前最先进的临床编码器。我们报告了在低数据情况下二元分类性能的显著提升(p < 0.001,经Bonferroni校正)。OphthaBERT在二元诊断和亚型诊断方面也能够实现卓越的分类性能,其计算成本仅为微调后的大型仅解码器语言模型的一小部分,却能超越它们。我们证明,在威尔默眼科研究所进行外部验证时,OphthaBERT在亚型诊断方面的宏F1得分比ICD编码提高了0.23分,并且具有强大的二元分类性能。OphthaBERT为通用眼科语言建模和青光眼自动诊断提供了一个可解释、公平的框架。