Suppr超能文献

EYE-Llama,一种用于眼科领域的大语言模型。

EYE-Llama, an in-domain large language model for ophthalmology.

作者信息

Haghighi Tania, Gholami Sina, Sokol Jared Todd, Kishnani Enaika, Ahsaniyan Adnan, Rahmanian Holakou, Hedayati Fares, Leng Theodore, Alam Minhaj Nur

机构信息

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA.

Department of Computer Science, Baha'i Institute for Higher Education, Tehran, Iran.

出版信息

iScience. 2025 Jun 23;28(7):112984. doi: 10.1016/j.isci.2025.112984. eCollection 2025 Jul 18.

Abstract

Training large language models (LLMs) on domain-specific data enhances their performance, yielding more accurate and reliable question-answering (Q&A) systems that support clinical decision-making and patient education. We present EYE-Llama, pretrained on ophthalmology-focused datasets, including PubMed abstracts, textbooks, and online articles, and fine-tuned on diverse Q&A pairs. We evaluated EYE-Llama against Llama 2, Llama 3, Meditron, ChatDoctor, ChatGPT, and several other LLMs. Using BERT (Bidirectional Encoder Representations from Transformers) score, BART (Bidirectional and Auto-Regressive Transformer) score, and BLEU (Bilingual Evaluation Understudy) metrics, EYE-Llama achieved superior scores. On the MedMCQA benchmark, it outperformed Llama 2, Meditron, and ChatDoctor. On PubMedQA, it achieved 0.96 accuracy, surpassing all models tested. These results demonstrate that domain-specific pretraining and fine-tuning significantly improve medical Q&A performance and underscore the value of specialized models such as EYE-Llama.

摘要

在特定领域数据上训练大语言模型(LLMs)可提高其性能,从而产生更准确、可靠的问答(Q&A)系统,以支持临床决策和患者教育。我们展示了EYE-Llama,它在专注于眼科的数据集上进行预训练,这些数据集包括PubMed摘要、教科书和在线文章,并在各种问答对上进行微调。我们将EYE-Llama与Llama 2、Llama 3、Meditron、ChatDoctor、ChatGPT以及其他几个大语言模型进行了评估。使用BERT(来自Transformer的双向编码器表示)分数、BART(双向和自回归Transformer)分数以及BLEU(双语评估替代)指标,EYE-Llama取得了更高的分数。在MedMCQA基准测试中,它优于Llama 2、Meditron和ChatDoctor。在PubMedQA上,它达到了0.96的准确率,超过了所有测试模型。这些结果表明,特定领域的预训练和微调显著提高了医学问答性能,并突出了EYE-Llama等专门模型的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/675e/12281063/3149c118f14d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验