Suppr超能文献

新诊断心血管疾病患者他汀类药物依从性相关因素及结局

Factors and outcomes associated with adherence to statins among patients with newly diagnosed cardiovascular disease.

作者信息

Li Jiang, Mudiganti Satish, Husby Hannah, Jones J B, Yan Xiaowei

机构信息

Sutter Health Center for Health Systems Research-West/Palo Alto Medical Foundation Research Institute, 795 El Camino Real, Ames Building, Palo Alto, CA 94301, USA.

Sutter Health Center for Health Systems Research East, 2121 North California Blvd, Suite 310, Walnut Creek, CA, 94596, USA.

出版信息

Am J Prev Cardiol. 2025 Jun 9;23:101028. doi: 10.1016/j.ajpc.2025.101028. eCollection 2025 Sep.

Abstract

BACKGROUND

Statin use is proven to be effective in lowering low-density lipoprotein cholesterol (LDL-C) levels and reducing risk of recurrent myocardial infarction, stroke, and mortality in individuals with established cardiovascular disease (CVD). We used medication dispensed data (e.g., SureScripts), which has been integrated with the electronic health record (EHR) to examine the factors and outcomes associated with adherence to statins.

METHODS

This study is a secondary data analysis using longitudinal data between 1/1/2010-10/31/2021 ( = 1486,286 over nearly 12 years) from a large community-based health system on all primary care patients aged 35 years or older when diagnosed with the first CVD two years after their first primary care visit and had new statin prescriptions on or after CVD diagnosis. Multivariable logistic regression models were used to identify the factors associated with filling the prescription and statin adherence, respectively. Survival analysis was used to assess the association between statin adherence and LDL-C control.

RESULTS

Of the 5155 patients with newly prescribed statins, a total of 3553 (68.9 %) were adherent, with insurance type, online patient portal use, race, age, statin intensity, and cardiologist visits emerging as significant predictors. Specifically, patients with PPO/FFS were less likely to fill statin prescriptions compared to those with HMO. Infrequent online patient portal use is associated with lower adherence. There is a disparity between patients race categories (Non-Hispanic Black (NHB) vs. Non-Hispanic White (NHW)) in filling the prescription and adhering to the filled prescription. Medication adherence is defined as proportion of days covered (PDC) of 80 % or greater. Adherence was positively associated with older age, high-intensity statins, and cardiologist visits. Having a visit with a cardiologist showed better adherence to the prescription and lowering of LDL values. Additionally, adhering to statins has shown a better outcome of lowering patients LDL values.

CONCLUSIONS

The findings emphasize demographic and healthcare factors in medication adherence and LDL control, suggesting tailored interventions for diverse populations, addressing disparities in insurance type, race, and online portal use, and involving cardiologists in medication management for improved medication adherence and clinical outcomes.

摘要

背景

他汀类药物的使用已被证明可有效降低低密度脂蛋白胆固醇(LDL-C)水平,并降低已确诊心血管疾病(CVD)患者复发心肌梗死、中风和死亡的风险。我们使用了已与电子健康记录(EHR)整合的药物配药数据(如SureScripts),以研究与他汀类药物依从性相关的因素和结果。

方法

本研究是一项二次数据分析,使用了来自一个大型社区卫生系统的2010年1月1日至2021年10月31日(近12年期间n = 1486286)的纵向数据,研究对象为所有35岁及以上的初级保健患者,这些患者在首次初级保健就诊两年后被诊断出患有首次CVD,并在CVD诊断时或之后有新的他汀类药物处方。多变量逻辑回归模型分别用于确定与处方配药和他汀类药物依从性相关的因素。生存分析用于评估他汀类药物依从性与LDL-C控制之间的关联。

结果

在5155例新开具他汀类药物处方的患者中,共有3553例(68.9%)依从,保险类型、在线患者门户使用情况、种族、年龄、他汀类药物强度和心脏病专家就诊次数成为显著预测因素。具体而言,与健康维护组织(HMO)患者相比,优先提供者组织/服务收费制(PPO/FFS)患者开具他汀类药物处方的可能性较小。不经常使用在线患者门户与较低的依从性相关。在处方配药和对已配药的依从性方面,不同种族类别患者(非西班牙裔黑人(NHB)与非西班牙裔白人(NHW))之间存在差异。药物依从性定义为覆盖天数比例(PDC)达到80%或更高。依从性与年龄较大、高强度他汀类药物和心脏病专家就诊次数呈正相关。就诊心脏病专家显示出对处方的更好依从性和LDL值的降低。此外,坚持服用他汀类药物显示出降低患者LDL值的更好效果。

结论

研究结果强调了药物依从性和LDL控制中的人口统计学和医疗保健因素,建议针对不同人群采取量身定制的干预措施,解决保险类型、种族和在线门户使用方面的差异,并让心脏病专家参与药物管理,以提高药物依从性和临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d0/12206012/34e58816c79b/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验