Mason Keldy S, Kim Ji-Won, Recker Elizabeth A, Nymick Jenna M, Shi Mingyu, Stolpen Franz A, Ju Jaechul, Page Zachariah A
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Cent Sci. 2025 May 29;11(6):975-982. doi: 10.1021/acscentsci.5c00289. eCollection 2025 Jun 25.
The limited diversity in photocurable resin chemistries has precluded access to certain geometries using digital light processing (DLP) 3D printing, a rapid, precise, economical, and low-waste manufacturing technology. Specifically, freestanding structures with floating overhangs (e.g., hooks) and mobile nonassembly structures that cannot be physically separated (e.g., joints) represent two such geometries that are difficult or impossible to access with contemporary DLP 3D printing. Herein, we disclose novel resins that selectively react with different colors of light to form soluble thermoplastics and insoluble thermosets. Systematic characterization of the acrylate- and epoxy-based resins and corresponding polymers from simultaneous UV and visible (violet or blue) light exposure revealed a rapid multimaterial 3D printing process (∼0.75 mm/min) capable of providing supports that dissolve in ethyl acetate, a "green" solvent, within 10 min at room temperature. Relative to manual support removal, the present process provides comparable or improved surface finishes and higher throughput. Finally, several proof-of-concept structures requiring dissolvable supports were 3D printed, including hooks, chains, and joints, which were scanned using computed tomography to showcase the process's geometric versatility and high fidelity. This work provides fundamental design principles for multimaterial resin chemistry and lays a foundation for automating next generation additive manufacturing.
光固化树脂化学的有限多样性使得使用数字光处理(DLP)3D打印技术无法制造某些特定几何形状的物体,而DLP 3D打印是一种快速、精确、经济且低浪费的制造技术。具体而言,具有悬空结构(如钩子)的独立式结构以及无法物理分离的可移动非组装结构(如关节)就是这样两种几何形状,使用当代的DLP 3D打印技术很难或无法制造出来。在此,我们公开了一种新型树脂,它能与不同颜色的光选择性地发生反应,形成可溶性热塑性塑料和不溶性热固性塑料。通过同时对基于丙烯酸酯和环氧树脂的树脂以及相应聚合物进行紫外线和可见光(紫色或蓝色)照射,系统表征揭示了一种快速的多材料3D打印工艺(约0.75毫米/分钟),该工艺能够提供在室温下10分钟内可溶解于“绿色”溶剂乙酸乙酯中的支撑材料。相对于手动去除支撑材料,该工艺能提供相当或更好的表面光洁度以及更高的产量。最后,3D打印了几个需要可溶解支撑材料的概念验证结构,包括钩子、链条和关节,并使用计算机断层扫描进行扫描,以展示该工艺在几何形状方面的多功能性和高保真度。这项工作为多材料树脂化学提供了基本的设计原则,并为下一代增材制造的自动化奠定了基础。