Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
Nat Commun. 2019 Feb 15;10(1):791. doi: 10.1038/s41467-019-08639-7.
Production of objects with varied mechanical properties is challenging for current manufacturing methods. Additive manufacturing could make these multimaterial objects possible, but methods able to achieve multimaterial control along all three axes of printing are limited. Here we report a multi-wavelength method of vat photopolymerization that provides chemoselective wavelength-control over material composition utilizing multimaterial actinic spatial control (MASC) during additive manufacturing. The multicomponent photoresins include acrylate- and epoxide-based monomers with corresponding radical and cationic initiators. Under long wavelength (visible) irradiation, preferential curing of acrylate components is observed. Under short wavelength (UV) irradiation, a combination of acrylate and epoxide components are incorporated. This enables production of multimaterial parts containing stiff epoxide networks contrasted against soft hydrogels and organogels. Variation in MASC formulation drastically changes the mechanical properties of printed samples. Samples printed using different MASC formulations have spatially-controlled chemical heterogeneity, mechanical anisotropy, and spatially-controlled swelling that facilitates 4D printing.
对于当前的制造方法来说,生产具有不同机械性能的物体具有挑战性。增材制造可以使这些多材料物体成为可能,但能够实现沿打印所有三个轴的多材料控制的方法有限。在这里,我们报告了一种多波长的光聚合方法,该方法利用多材料光活性空间控制(MASC)在增材制造过程中提供对材料组成的化学选择性波长控制。多组分光致聚合物包括基于丙烯酸酯和环氧化物的单体以及相应的自由基和阳离子引发剂。在长波长(可见光)照射下,观察到丙烯酸酯组分的优先固化。在短波长(UV)照射下,同时掺入丙烯酸酯和环氧化物组分。这使得能够生产包含硬环氧树脂网络的多材料零件,与软水凝胶和有机凝胶形成对比。MASC 配方的变化极大地改变了打印样品的机械性能。使用不同 MASC 配方打印的样品具有空间控制的化学不均匀性、机械各向异性和空间控制的溶胀性,从而有利于 4D 打印。