文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于通过生物能量诱导血管生成促进耐甲氧西林金黄色葡萄球菌感染伤口治疗的生物活性金属-蛋白质基质

Bioactive metal-protein matrix for promoting MRSA infection wound therapy through bioenergy-induced angiogenesis.

作者信息

Li Sihua, Ma Junping, Zhang Liuyang, Qu Xiaoyan, Zhang Long, Huang Qian, Lei Bo

机构信息

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China.

Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.

出版信息

Theranostics. 2025 Jun 9;15(14):6882-6900. doi: 10.7150/thno.112678. eCollection 2025.


DOI:10.7150/thno.112678
PMID:40585987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12203806/
Abstract

Wound healing impaired by multidrug-resistant bacteria (MDRB) remains a significant clinical challenge, primarily due to persistent bacterial infection, excessive inflammation, overproduction of reactive oxygen species (ROS), and compromised vascularization. Importantly, the cellular metabolic state plays a vital role in regulating cellular behavior, and strategies aimed at enhancing cellular energy metabolism hold great promise for promoting tissue regeneration. Herein, we present a multifunctional and bioactive silk fibroin-poly(citrate-curcumin)-metal-based biomimetic matrix (SFPC) designed to treat methicillin-resistant staphylococcus aureus (MRSA)-infected wounds by promoting bioenergy-induced angiogenesis. SFPC exhibited robust broad-spectrum antimicrobial, anti-inflammatory, intracellular ROS-scavenging, and pro-angiogenic properties. Notably, SFPC effectively enhanced mitochondrial membrane potential and promoted adenosine triphosphate (ATP) production in HUVECs, thereby accelerating angiogenesis through the controlled release of citrate. This study suggests that SFPC is a promising alternative for the treatment of MRSA infected wounds and provides a facile approach for the development of a multifunctional hydrogel that promotes the healing of MRSA infected wounds at the level of cellular energy biology.

摘要

耐多药细菌(MDRB)导致的伤口愈合受损仍然是一个重大的临床挑战,主要原因是持续的细菌感染、过度炎症、活性氧(ROS)过度产生以及血管生成受损。重要的是,细胞代谢状态在调节细胞行为中起着至关重要的作用,旨在增强细胞能量代谢的策略对于促进组织再生具有巨大潜力。在此,我们展示了一种多功能生物活性丝素蛋白 - 聚(柠檬酸盐 - 姜黄素) - 金属基仿生基质(SFPC),其设计用于通过促进生物能量诱导的血管生成来治疗耐甲氧西林金黄色葡萄球菌(MRSA)感染的伤口。SFPC表现出强大的广谱抗菌、抗炎、细胞内ROS清除和促血管生成特性。值得注意的是,SFPC有效增强了人脐静脉内皮细胞(HUVECs)的线粒体膜电位并促进了三磷酸腺苷(ATP)的产生,从而通过柠檬酸盐的控释加速血管生成。这项研究表明,SFPC是治疗MRSA感染伤口的一种有前途的替代方法,并为开发一种在细胞能量生物学水平上促进MRSA感染伤口愈合的多功能水凝胶提供了一种简便方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/3ebcb3691d5f/thnov15p6882g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/28baf8c483e6/thnov15p6882g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/604255fc4d1d/thnov15p6882g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/dd825d5b0aba/thnov15p6882g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/5e429da565e2/thnov15p6882g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/fd28e2221281/thnov15p6882g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/ecc77ce99121/thnov15p6882g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/4bb1b5a047ad/thnov15p6882g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/8d755ee3cc9f/thnov15p6882g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/3ebcb3691d5f/thnov15p6882g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/28baf8c483e6/thnov15p6882g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/604255fc4d1d/thnov15p6882g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/dd825d5b0aba/thnov15p6882g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/5e429da565e2/thnov15p6882g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/fd28e2221281/thnov15p6882g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/ecc77ce99121/thnov15p6882g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/4bb1b5a047ad/thnov15p6882g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/8d755ee3cc9f/thnov15p6882g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661a/12203806/3ebcb3691d5f/thnov15p6882g009.jpg

相似文献

[1]
Bioactive metal-protein matrix for promoting MRSA infection wound therapy through bioenergy-induced angiogenesis.

Theranostics. 2025-6-9

[2]
Polydopamine-assisted smart bacteria-responsive hydrogel: Switchable antimicrobial and antifouling capabilities for accelerated wound healing.

J Adv Res. 2025-7

[3]
A photothermal-enhanced thermoelectric nanosheet incorporated with zwitterionic hydrogels for wound repair and bioelectronics.

Acta Biomater. 2025-6-15

[4]
Multi-enzymatic biomimetic cerium-based MOFs mediated precision chemodynamic synergistic antibacteria and tissue repair for MRSA-infected wounds.

J Nanobiotechnology. 2025-5-20

[5]
ROS/pH Dual-Responsive Hydrogel Dressings Loaded with Amphiphilic Structured Nano Micelles for the Repair of Infected Wounds.

Int J Nanomedicine. 2025-6-23

[6]
Resveratrol promotes diabetic wound healing by inhibiting ferroptosis in vascular endothelial cells.

Burns. 2024-12

[7]
Intelligent ROS therapy driven by iron-based nanozyme with controllable catalytic activity for infected wound healing.

J Nanobiotechnology. 2025-6-19

[8]
A hydrogel crosslinked with mixed-valence copper nanoclusters for diabetic wound healing.

Acta Biomater. 2025-6-15

[9]
A biomimetic nanofiber composite hydrogel with tissue adhesion, self-healing and antibacterial ability for infected wound healing.

Acta Biomater. 2025-6-15

[10]
Microenvironment-Responsive Xanthotoxol-Copper Nanozyme for MRSA-Infected Wound Healing.

ACS Appl Mater Interfaces. 2025-6-18

本文引用的文献

[1]
Intrinsically bioactive multifunctional Poly(citrate-curcumin) for rapid lung injury and MRSA infection therapy.

Bioact Mater. 2024-7-17

[2]
Energy metabolism as therapeutic target for aged wound repair by engineered extracellular vesicle.

Sci Adv. 2024-4-12

[3]
Achieving Clearance of Drug-Resistant Bacterial Infection and Rapid Cutaneous Wound Regeneration Using an ROS-Balancing-Engineered Heterojunction.

Adv Mater. 2024-4

[4]
Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration.

Adv Mater. 2024-4

[5]
Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy.

J Hematol Oncol. 2023-11-30

[6]
Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing.

ACS Appl Mater Interfaces. 2023-11-8

[7]
Angiogenic signaling pathways and anti-angiogenic therapy for cancer.

Signal Transduct Target Ther. 2023-5-11

[8]
Rapid sterilisation and diabetic cutaneous regeneration using cascade bio-heterojunctions through glucose oxidase-primed therapy.

Bioact Mater. 2022-7-31

[9]
Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing.

Bioact Mater. 2023-3-14

[10]
Vascularized polypeptide hydrogel modulates macrophage polarization for wound healing.

Acta Biomater. 2023-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索