Deng Lixue, Cheng Yanni, Liu Jia, Yuan Ye, Zhou Cheng, Yao Chundong, Sun Jia, Zhou Zhixin, Chen Zuoyu, Wang Zheng, Wang Lin
Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
J Nanobiotechnology. 2025 Jun 19;23(1):456. doi: 10.1186/s12951-025-03495-8.
Therapeutic generation of reactive oxygen species (ROS) through catalytic therapy demonstrates antibacterial efficacy against wound infections. However, prolonged and unregulated ROS production risks inducing intolerable oxidative stress alongside exacerbated inflammatory responses, creating a microenvironment counterproductive to wound healing. Here, inspired by rechargeable batteries, we have developed a catalytic activity-controllable nanozyme by integrating Fe and Fe within metal-organic frameworks (FeNZ). Specifically, the overexpressed glutathione in the infective wound can increase the Fe fraction in FeNZ and endow FeNZ with peroxidase (POD)-like activity, which can convert hydrogen peroxide (HO) into hydroxyl radicals (•OH) for effective eradication of both drug-sensitive and drug-resistant bacteria (Staphylococcus aureus, 97.9% of antibacterial rate; methicillin-resistant S. aureus (MRSA), 93.2% of antibacterial rate) by disrupting bacterial membranes. Of note, the catalytic performance of FeNZ declined in parallel with the increase in Fe content during the •OH generation process, resulting in a low inflammatory microenvironment for infected wound healing and faster wound healing (95.5% of healing rate for FeNZ + HO group, 83.5% of healing rate for Control group, day 16). The activity-controllable FeNZ thus holds promise as an effective agent for bacterial elimination and enhanced wound repair, presenting a novel strategy for the management of infected wounds.
通过催化疗法产生活性氧(ROS)具有抗伤口感染的抗菌功效。然而,长期且不受调控的ROS生成有引发难以忍受的氧化应激以及加剧炎症反应的风险,从而形成不利于伤口愈合的微环境。在此,受可充电电池启发,我们通过在金属有机框架(FeNZ)中整合铁和铁开发了一种催化活性可控的纳米酶。具体而言,感染伤口中过表达的谷胱甘肽可增加FeNZ中的铁含量,并赋予FeNZ过氧化物酶(POD)样活性,该活性可将过氧化氢(HO)转化为羟基自由基(•OH),通过破坏细菌膜有效根除药敏菌和耐药菌(金黄色葡萄球菌,抗菌率97.9%;耐甲氧西林金黄色葡萄球菌(MRSA),抗菌率93.2%)。值得注意的是,在•OH生成过程中,FeNZ的催化性能随铁含量的增加而下降,从而为感染伤口愈合营造了低炎症微环境,并加快了伤口愈合速度(FeNZ + HO组愈合率95.5%,对照组愈合率83.5%,第16天)。因此,活性可控的FeNZ有望成为一种有效的细菌清除和增强伤口修复剂,为感染伤口的处理提供了一种新策略。
J Nanobiotechnology. 2025-6-19
ACS Appl Mater Interfaces. 2025-6-18
Cochrane Database Syst Rev. 2018-7-21
ACS Appl Mater Interfaces. 2025-6-18
J Colloid Interface Sci. 2025-3
Eur J Med Chem. 2024-12-5
Drug Resist Updat. 2024-11
Adv Sci (Weinh). 2024-10
Clin Infect Dis. 2024-10-15
J Nanobiotechnology. 2024-4-25