文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由具有可控催化活性的铁基纳米酶驱动的智能ROS疗法用于感染伤口愈合。

Intelligent ROS therapy driven by iron-based nanozyme with controllable catalytic activity for infected wound healing.

作者信息

Deng Lixue, Cheng Yanni, Liu Jia, Yuan Ye, Zhou Cheng, Yao Chundong, Sun Jia, Zhou Zhixin, Chen Zuoyu, Wang Zheng, Wang Lin

机构信息

Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

J Nanobiotechnology. 2025 Jun 19;23(1):456. doi: 10.1186/s12951-025-03495-8.


DOI:10.1186/s12951-025-03495-8
PMID:40537805
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12178039/
Abstract

Therapeutic generation of reactive oxygen species (ROS) through catalytic therapy demonstrates antibacterial efficacy against wound infections. However, prolonged and unregulated ROS production risks inducing intolerable oxidative stress alongside exacerbated inflammatory responses, creating a microenvironment counterproductive to wound healing. Here, inspired by rechargeable batteries, we have developed a catalytic activity-controllable nanozyme by integrating Fe and Fe within metal-organic frameworks (FeNZ). Specifically, the overexpressed glutathione in the infective wound can increase the Fe fraction in FeNZ and endow FeNZ with peroxidase (POD)-like activity, which can convert hydrogen peroxide (HO) into hydroxyl radicals (•OH) for effective eradication of both drug-sensitive and drug-resistant bacteria (Staphylococcus aureus, 97.9% of antibacterial rate; methicillin-resistant S. aureus (MRSA), 93.2% of antibacterial rate) by disrupting bacterial membranes. Of note, the catalytic performance of FeNZ declined in parallel with the increase in Fe content during the •OH generation process, resulting in a low inflammatory microenvironment for infected wound healing and faster wound healing (95.5% of healing rate for FeNZ + HO group, 83.5% of healing rate for Control group, day 16). The activity-controllable FeNZ thus holds promise as an effective agent for bacterial elimination and enhanced wound repair, presenting a novel strategy for the management of infected wounds.

摘要

通过催化疗法产生活性氧(ROS)具有抗伤口感染的抗菌功效。然而,长期且不受调控的ROS生成有引发难以忍受的氧化应激以及加剧炎症反应的风险,从而形成不利于伤口愈合的微环境。在此,受可充电电池启发,我们通过在金属有机框架(FeNZ)中整合铁和铁开发了一种催化活性可控的纳米酶。具体而言,感染伤口中过表达的谷胱甘肽可增加FeNZ中的铁含量,并赋予FeNZ过氧化物酶(POD)样活性,该活性可将过氧化氢(HO)转化为羟基自由基(•OH),通过破坏细菌膜有效根除药敏菌和耐药菌(金黄色葡萄球菌,抗菌率97.9%;耐甲氧西林金黄色葡萄球菌(MRSA),抗菌率93.2%)。值得注意的是,在•OH生成过程中,FeNZ的催化性能随铁含量的增加而下降,从而为感染伤口愈合营造了低炎症微环境,并加快了伤口愈合速度(FeNZ + HO组愈合率95.5%,对照组愈合率83.5%,第16天)。因此,活性可控的FeNZ有望成为一种有效的细菌清除和增强伤口修复剂,为感染伤口的处理提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/acf7c5f01274/12951_2025_3495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/28015e4d7285/12951_2025_3495_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/e335de591234/12951_2025_3495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/377677441830/12951_2025_3495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/17f9bf5adc8d/12951_2025_3495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/8c51cc9cac56/12951_2025_3495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/59384866d80a/12951_2025_3495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/75d8ce7badf9/12951_2025_3495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/89f6d6286385/12951_2025_3495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/acf7c5f01274/12951_2025_3495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/28015e4d7285/12951_2025_3495_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/e335de591234/12951_2025_3495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/377677441830/12951_2025_3495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/17f9bf5adc8d/12951_2025_3495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/8c51cc9cac56/12951_2025_3495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/59384866d80a/12951_2025_3495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/75d8ce7badf9/12951_2025_3495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/89f6d6286385/12951_2025_3495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f9e/12178039/acf7c5f01274/12951_2025_3495_Fig8_HTML.jpg

相似文献

[1]
Intelligent ROS therapy driven by iron-based nanozyme with controllable catalytic activity for infected wound healing.

J Nanobiotechnology. 2025-6-19

[2]
Multi-enzymatic biomimetic cerium-based MOFs mediated precision chemodynamic synergistic antibacteria and tissue repair for MRSA-infected wounds.

J Nanobiotechnology. 2025-5-20

[3]
Microenvironment-Responsive Xanthotoxol-Copper Nanozyme for MRSA-Infected Wound Healing.

ACS Appl Mater Interfaces. 2025-6-18

[4]
A photothermal-enhanced thermoelectric nanosheet incorporated with zwitterionic hydrogels for wound repair and bioelectronics.

Acta Biomater. 2025-6-15

[5]
Study on the Application of Zeolitic Imidazolate Framework-8 Loaded With Artemisia Argyi Essential Oil in the Treatment of Bacterial Infected Wounds.

J Biomed Mater Res A. 2025-6

[6]
Polydopamine-assisted smart bacteria-responsive hydrogel: Switchable antimicrobial and antifouling capabilities for accelerated wound healing.

J Adv Res. 2025-7

[7]
Dextran guanidinylated carbon dots with antibacterial and immunomodulatory activities as eye drops for the topical treatment of MRSA-induced infectious keratitis.

Acta Biomater. 2025-6-15

[8]
Interventions for the eradication of meticillin-resistant Staphylococcus aureus (MRSA) in people with cystic fibrosis.

Cochrane Database Syst Rev. 2018-7-21

[9]
Exploring the wound healing activity of phytosomal gel of and leaves ethanolic extracts with antioxidant and antimicrobial activities in infected excision wound model.

J Biomater Sci Polym Ed. 2024-11

[10]
Laminated Au-TiO/C Nanozyme for Ultrasensitive Detection of Cholesterol and Enhanced Bactericides.

ACS Appl Mater Interfaces. 2025-6-18

本文引用的文献

[1]
Onion-like carbon based single-atom iron nanozyme for photothermal and catalytic synergistic antibacterial application.

J Colloid Interface Sci. 2025-3

[2]
Nanotechnology-based approaches for antibacterial therapy.

Eur J Med Chem. 2024-12-5

[3]
Mechanism of staphylococcal resistance to clinically relevant antibiotics.

Drug Resist Updat. 2024-11

[4]
Cholesterol Depletion-Enhanced Ferroptosis and Immunotherapy via Engineered Nanozyme.

Adv Sci (Weinh). 2024-10

[5]
Mechanisms Associated with Superoxide Radical Scavenging Reactions Involving Phenolic Compounds Deduced Based on the Correlation between Oxidation Peak Potentials and Second-Order Rate Constants Determined Using Flow-Injection Spin-Trapping EPR Methods.

J Agric Food Chem. 2024-7-17

[6]
The Use of Long-term Antibiotics for Suppression of Bacterial Infections.

Clin Infect Dis. 2024-10-15

[7]
Antimicrobial Activity of Hydrogen Peroxide for Application in Food Safety and COVID-19 Mitigation: An Updated Review.

J Food Prot. 2024-7

[8]
Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections.

ACS Nano. 2024-6-4

[9]
The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis.

J Nanobiotechnology. 2024-4-25

[10]
Enhanced Bacterial Cuproptosis-Like Death via Reversal of Hypoxia Microenvironment for Biofilm Infection Treatment.

Adv Sci (Weinh). 2024-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索