Garza Sarahi J, Kicin Bilal, Sarott Roman C, Pfaff Patrick, Kosar Miroslav, Weishaar Tatum, Schnacke Paul, Lobingier Braden T, Carreira Erick M, Frank James A
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States.
Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239, United States.
J Am Chem Soc. 2025 Jul 9;147(27):23482-23491. doi: 10.1021/jacs.4c18379. Epub 2025 Jun 30.
Understanding the intricacies of the endocannabinoid system is hindered by the lack of tools to target specific pools of CB1 receptors (CB1Rs) across diverse neural circuits associated with mood, motor function, cognition, and other physiological processes. Herein, we introduce the first photoswitchable, orthogonal remotely tethered cannabinoid ligand, PORTL-THC, designed to achieve cell-specific and reversible control of CB1R signaling with high spatial and temporal resolution, thereby overcoming the limitations of conventional freely diffusible ligands. PORTL-THC was selectively tethered to membrane-anchored SNAP-tags expressed in live cells, and provided reversible optical control of CB1R signaling when photoswitched by UV-A irradiation. We validated the functionality of PORTL-THC in live Neuro2a cells using a novel real-time cAMP imaging assay, demonstrating light-dependent and reversible modulation of endogenously expressed CB1R activity. Additionally, we demonstrated that SNAP-tethered PORTL-THC does not induce CB1R internalization, distinguishing it from conventional, freely diffusible agonists. Our results establish PORTL-THC as a powerful tool for optical control of CB1R in a spatially restricted manner, setting the stage for dissecting CB1R function in complex settings and advancing the study of cannabinoid signaling across various physiological and pathological contexts.
由于缺乏工具来靶向与情绪、运动功能、认知和其他生理过程相关的不同神经回路中特定池的CB1受体(CB1Rs),对内源性大麻素系统复杂性的理解受到阻碍。在此,我们介绍了首个可光开关的、正交远程连接的大麻素配体PORTL-THC,其设计目的是以高空间和时间分辨率实现对CB1R信号传导的细胞特异性和可逆控制,从而克服了传统自由扩散配体的局限性。PORTL-THC被选择性地连接到活细胞中表达的膜锚定SNAP标签上,并在经紫外线A照射进行光开关时对CB1R信号传导提供可逆的光学控制。我们使用一种新型实时cAMP成像测定法在活的Neuro2a细胞中验证了PORTL-THC的功能,证明了内源性表达的CB1R活性的光依赖性和可逆调节。此外,我们证明了与SNAP连接的PORTL-THC不会诱导CB1R内化,这使其有别于传统的自由扩散激动剂。我们的结果确立了PORTL-THC作为一种以空间受限方式对CB1R进行光学控制的强大工具,为在复杂环境中剖析CB1R功能以及推进对各种生理和病理背景下大麻素信号传导的研究奠定了基础。