Kuramochi Yusuke, Itabashi Jun, Toyama Mari, Tanaka Seiichi, Nagao Noriharu, Onda Ken, Ishida Hitoshi
Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan.
Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
Inorg Chem. 2025 Jul 14;64(27):13647-13660. doi: 10.1021/acs.inorgchem.5c00466. Epub 2025 Jun 30.
Photoactivated CO-releasing molecules have potential medical applications. (Cl,Cl)-[Ru(bpy)(CO)Cl] (bpy = 2,2'-bipyridine) efficiently releases the first CO ligand (∼100% quantum yield), but the second CO dissociation is inefficient, and its precise quantum yield remains undetermined. Photodissociation of (Cl,Cl)-[Ru(bpy)(CO)Cl] yielded two monocarbonyl complexes, (Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl] and (Cl,Cl)-[Ru(bpy)(CO)(CHCN)Cl], as the major and minor stereoisomeric products, respectively. The apparent quantum yields for the second CO dissociations were 0.56% and 0.78% for (Cl,Cl),(Cl,CHCN)- and (Cl,Cl)-isomers, respectively. Considering the efficient photoisomerization of the (Cl,Cl)- to (Cl,Cl),(Cl,CHCN)-isomer, the (Cl,Cl)-isomer would have a higher quantum yield. We also isolated the monocarbonyl complex after the first CO dissociation of (Cl,Cl)-[Ru(6Mes-bpy)(CO)Cl] (6Mes-bpy = 6,6'-dimesityl-2,2'-bipyridine), which contains bulky substituents at the 6,6'-positions of the bpy ligand. X-ray crystal structure analysis revealed the selective formation of (Cl,Cl)-[Ru(6Mes-bpy)(CO)(CHCN)Cl]. The quantum yield for the second CO dissociation from this structure was found to be 2.0%, nearly four times larger than that of (Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl]. Time-resolved IR (TRIR) measurements demonstrated that photoirradiation of (Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl] produced a five-coordinate pyramidal square intermediate with a stronger Ru-CO bond than in the ground state. In contrast, no such intermediate was observed for (Cl,Cl)-[Ru(6Mes-bpy)(CO)(CHCN)Cl]. The presence of this intermediate is thought to be a key factor in inhibiting further CO dissociation.
光活化一氧化碳释放分子具有潜在的医学应用。(Cl,Cl)-[Ru(bpy)(CO)Cl](bpy = 2,2'-联吡啶)能高效释放第一个一氧化碳配体(量子产率约为100%),但第二个一氧化碳的解离效率较低,其精确的量子产率仍未确定。(Cl,Cl)-[Ru(bpy)(CO)Cl]的光解离产生了两种单羰基配合物,(Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl]和(Cl,Cl)-[Ru(bpy)(CO)(CHCN)Cl],分别作为主要和次要的立体异构产物。(Cl,Cl),(Cl,CHCN)-和(Cl,Cl)-异构体的第二个一氧化碳解离的表观量子产率分别为0.56%和0.78%。考虑到(Cl,Cl)-异构体向(Cl,Cl),(Cl,CHCN)-异构体的高效光异构化,(Cl,Cl)-异构体可能具有更高的量子产率。我们还在(Cl,Cl)-[Ru(6Mes-bpy)(CO)Cl](6Mes-bpy = 6,6'-二甲基-2,2'-联吡啶)的第一个一氧化碳解离后分离出了单羰基配合物,该配合物在bpy配体的6,6'-位含有庞大的取代基。X射线晶体结构分析表明选择性形成了(Cl,Cl)-[Ru(6Mes-bpy)(CO)(CHCN)Cl]。发现该结构中第二个一氧化碳解离的量子产率为2.0%,几乎是(Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl]的四倍。时间分辨红外(TRIR)测量表明,(Cl,Cl),(Cl,CHCN)-[Ru(bpy)(CO)(CHCN)Cl]的光照射产生了一种五配位的金字塔形四方中间体,其Ru-CO键比基态更强。相比之下,(Cl,Cl)-[Ru(6Mes-bpy)(CO)(CHCN)Cl]未观察到这样的中间体。这种中间体的存在被认为是抑制进一步一氧化碳解离的关键因素。