Wang Shuang, Han Chao, Chen Xing, Xiang Yifei, Li Qinzhen, Chai Jinsong, Yang Sha, Du Yuanxin, Luo Qiquan, Zhu Manzhou
Institutes of Physical Science and Information Technology, Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
ACS Nano. 2025 Jul 15;19(27):25334-25341. doi: 10.1021/acsnano.5c06625. Epub 2025 Jun 30.
In this study, we realized the removal of a single gold atom on the surface of the Au(AdmS)S(FPhP) (Au for short) cluster by surface engineering and prepared Au(AdmS)(PhPyP) (Au for short) with an atomic-level defect. The structural analysis and comparison showed that the 21st gold atom is directly related to the exposure of the ninth gold atom in the core, which can be a catalytically active site. In catalytic comparison, Au demonstrates more excellent catalytic activity than Au in eCORR, with the current density of Au being 3 times that of Au at -1.3 V. The maximum FE of Au is 92.47%, while that of Au is 53.66% at -0.9 V. Finally, theoretical calculations point out that the charge transfer on the ninth gold atom is the most active for the increase in CO adsorption and promotes the CO reduction reaction.
在本研究中,我们通过表面工程实现了Au(AdmS)S(FPhP)(简称Au)团簇表面单个金原子的去除,并制备了具有原子级缺陷的Au(AdmS)(PhPyP)(简称Au)。结构分析和比较表明,第21个金原子与核心中第九个金原子的暴露直接相关,该金原子可能是一个催化活性位点。在催化比较中,Au在电化学一氧化碳还原反应(eCORR)中表现出比Au更优异的催化活性,在-1.3 V时Au的电流密度是Au的3倍。Au的最大法拉第效率(FE)为92.47%,而在-0.9 V时Au的最大法拉第效率为53.66%。最后,理论计算指出,第九个金原子上的电荷转移对一氧化碳吸附的增加最为活跃,并促进了一氧化碳还原反应。