Suppr超能文献

Cullin3-环状E3泛素连接酶复合物和USP14调节spastin介导的微管切断及神经突生长促进作用。

The Cullin3-Ring E3 ubiquitin ligase complex and USP14 regulate spastin-mediated microtubule severing and promotion of neurite outgrowth.

作者信息

Cai Zhenbin, Wu Hui, Jiang Tao, Ma Ao, Meng Zhichao, Zhu Jiehao, Lin Hongsheng, Liang Yaozhong, Zhang Guowei, Tan Minghui

机构信息

Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.

Department of Orthopedics, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.

出版信息

Neural Regen Res. 2026 Apr 1;21(4):1641-1651. doi: 10.4103/NRR.NRR-D-25-00037. Epub 2025 Jun 20.

Abstract

JOURNAL/nrgr/04.03/01300535-202604000-00044/figure1/v/2025-06-30T060627Z/r/image-tiff Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity. However, the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown. Here, we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination. Cullin3 facilitated spastin degradation and ubiquitination. RING-box protein 1, but not RING-box protein 2, acted synergistically with Cullin3 protein to regulate spastin degradation. Overexpression of Culin3 or BRX1 markedly suppressed spastin expression, and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth. Moreover, USP14 interacted directly with spastin to mediate its de-ubiquitination. USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation. Although co-expression of spastin and USP14 did not enhance microtubule severing, it did increase neurite length in hippocampal neurons. Taken together, these findings elucidate the intricate regulatory mechanisms of spastin turnover, highlighting the roles of the Cullin-3-Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation. The dynamic interplay between these factors governs spastin stability and function, ultimately influencing microtubule dynamics and neuronal morphology. These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.

摘要

痉挛素的翻译后修饰能够精确地时空控制其微管切断活性。然而,在神经突生长的背景下,痉挛素周转的详细调控机制仍不清楚。在这里,我们发现痉挛素与泛素相互作用,并通过K48介导的多泛素化显著降解。Cullin3促进痉挛素的降解和泛素化。环盒蛋白1而非环盒蛋白2与Cullin3蛋白协同作用来调节痉挛素的降解。Culin3或BRX1的过表达显著抑制痉挛素的表达,并抑制痉挛素介导的微管切断和神经突生长的促进作用。此外,USP14直接与痉挛素相互作用以介导其去泛素化。USP14的过表达显著增加痉挛素的表达,并抑制其泛素化和降解。虽然痉挛素和USP14的共表达没有增强微管切断,但它确实增加了海马神经元的神经突长度。综上所述,这些发现阐明了痉挛素周转的复杂调控机制,突出了Cullin-3-Ring E3泛素连接酶复合物和USP14在协调其泛素化和降解中的作用。这些因素之间的动态相互作用决定了痉挛素的稳定性和功能,最终影响微管动力学和神经元形态。这些见解为与痉挛素缺陷相关的神经退行性疾病的潜在治疗靶点提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef7/12407562/7eef561874c1/NRR-21-1641-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验