Wu Wentao, Liu Chu, Tan Choon-Hong, Ye Xinyi
College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China.
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Acc Chem Res. 2025 Jun 30. doi: 10.1021/acs.accounts.5c00283.
ConspectusCatalysts drive asymmetric transformations by orchestrating a network of covalent and noncovalent interactions that precisely regulate the reactivity and stereoselectivity. Ion pair catalysis, developed based on the inherent strength and long-range nature of ionic interactions, has demonstrated high catalytic efficiency and broad applicability. While chiral cationic catalysts have long been central to this field, the critical roles of their counteranions have historically been overlooked. Over the past 15 years, we have developed a class of -sp-hybridized guanidinium chiral cation ion pair catalysts, which have been widely applied in enantioselective reactions. In this Account, we present new insights into these catalysts, revealing how the roles of anions, acting as substrates, reagents, and cocatalysts, can be strategically leveraged to achieve remarkable enantioselectivity across a wide range of organic transformations.When acting as substrates, anions, such as sulfinates, thiocarboxylates, and azides, are rendered reactive through intimate ion pairing with the chiral guanidinium moiety. This strategy facilitates desymmetrization processes, exemplified by the conversion of sulfinates to enantioenriched sulfinate esters and the remote desymmetrization of -dibromocyclohexanone via sequential S2 and acyl transfer steps. Mechanistically, halogenophilic S2X pathways (e.g., thiocarboxylate substitutions at sterically hindered tertiary carbons) bypass traditional steric limitations, while dynamic kinetic resolution of racemic bromides via azide substitution highlights the interplay between ion exchange and interfacial dynamics.Anions generated from stoichiometric reagents give rise to highly reactive intermediates such as enolates, sulfenates, and hypervalent silicates, which form ion pairs with chiral cations, enabling enantioselective transformations. For instance, enolates displace tertiary bromides via an S2X mechanism (frontside attack), circumventing steric hindrance. Sulfur alkylation of sulfenamides yields chiral sulfilimines, while fluoride-activated acylsilanes undergo Brook-like rearrangements through penta-coordinate silicates. Silicon hydrides activated by fluoride form hydridosilicates, enabling enantioselective conjugate reductions of chromones and coumarins. The versatility of ion pairing is further illustrated by α-cyano carbanions in Pd-catalyzed decarboxylative allylic alkylations and is extended to a cooperative catalytic system, where DMAP-generated nucleophiles enable enantioselective phospha-Michael additions via dynamic cation-exchange activation.The utilization of inorganic anions as cocatalysts further expands the scope of chiral cation ion pair catalysis. Peroxytungstate anions synergize with chiral cations to enable the epoxidation of allylic amines, while peroxomolybdate facilitates the -oxidation of tertiary amines with high enantioselectivity. Beyond inorganic systems, organic anions also serve as effective cocatalysts. Notably, preformed pentanidium pyridinyl-sulfonamide ion pairs have been shown to catalyze the enantioselective Steglich rearrangement with high efficiency. This strategy extends to bisguanidinium sulfonated-phosphine/Pd ion pair catalysis, achieving stereocontrol in allylic amination of Morita-Baylis-Hillman substrates.By systematically delineating the diverse roles of anions in guanidinium ion pair catalysis, this Account highlights new mechanistic insights and synthetic applications, paving the way for further advancements in asymmetric catalysis through precise control of ionic interactions.
概述 催化剂通过精心安排共价和非共价相互作用网络来驱动不对称转化,该网络精确调节反应性和立体选择性。基于离子相互作用的固有强度和长程性质开发的离子对催化,已显示出高催化效率和广泛的适用性。虽然手性阳离子催化剂长期以来一直是该领域的核心,但它们的抗衡阴离子的关键作用在历史上一直被忽视。在过去的15年里,我们开发了一类sp杂化的胍鎓手性阳离子离子对催化剂,它们已广泛应用于对映选择性反应。在本综述中,我们展示了对这些催化剂的新见解,揭示了作为底物、试剂和共催化剂的阴离子的作用如何能够被策略性地利用,以在广泛的有机转化中实现显著的对映选择性。 当作为底物时,诸如亚磺酸盐、硫代羧酸盐和叠氮化物等阴离子通过与手性胍鎓部分紧密离子配对而变得具有反应性。这种策略促进了去对称化过程,例如亚磺酸盐转化为对映体富集的亚磺酸酯,以及通过连续的S2和酰基转移步骤实现α,α'-二溴环己酮的远程去对称化。从机理上讲,亲卤S2X途径(例如在空间位阻较大的叔碳上进行硫代羧酸盐取代)绕过了传统的空间限制,而通过叠氮化物取代对外消旋溴化物进行动态动力学拆分突出了离子交换和界面动力学之间的相互作用。 化学计量试剂产生的阴离子会产生高活性中间体,如烯醇盐、亚磺酸盐和高价硅酸盐,它们与手性阳离子形成离子对,从而实现对映选择性转化。例如,烯醇盐通过S2X机制(正面进攻)取代叔溴化物,规避了空间位阻。亚磺酰胺的硫烷基化产生手性亚砜亚胺,而氟化物活化的酰基硅烷通过五配位硅酸盐进行类似布鲁克重排。氟化物活化的硅氢化物形成氢化硅酸盐,能够对对苯二酚和香豆素进行对映选择性共轭还原。离子配对的多功能性在钯催化的脱羧烯丙基烷基化中的α-氰基碳负离子中得到进一步说明,并扩展到一个协同催化体系,其中DMAP产生的亲核试剂通过动态阳离子交换活化实现对映选择性磷迈克尔加成。 将无机阴离子用作共催化剂进一步扩展了手性阳离子离子对催化的范围。过氧钨酸根阴离子与手性阳离子协同作用,实现烯丙基胺的环氧化,而过氧钼酸根则以高对映选择性促进叔胺的α-氧化。除了无机体系,有机阴离子也可作为有效的共催化剂。值得注意的是,预先形成的戊铵吡啶基磺酰胺离子对已被证明能高效催化对映选择性施陶丁格重排。这种策略扩展到双胍鎓磺化膦/钯离子对催化,在森田 - 贝利斯 - 希尔曼底物的烯丙基胺化中实现立体控制。 通过系统地描述阴离子在胍鎓离子对催化中的不同作用,本综述突出了新的机理见解和合成应用,为通过精确控制离子相互作用在不对称催化方面的进一步进展铺平了道路。
Acc Chem Res. 2025-6-30
Acc Chem Res. 2025-8-5
2025-1
Acc Chem Res. 2025-7-1
Arch Ital Urol Androl. 2025-6-30
Acc Chem Res. 2017-4-5
Psychopharmacol Bull. 2024-7-8