Cao Weidi, Liu Xiaohua, Feng Xiaoming
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
Acc Chem Res. 2025 Aug 5;58(15):2496-2510. doi: 10.1021/acs.accounts.5c00370. Epub 2025 Jul 12.
ConspectusThe strategic implementation of asymmetric catalytic radical reactions has evolved into a sophisticated methodology for constructing stereogenic centers, driven by remarkable advancements in radical generation techniques. However, achieving high stereoselectivity remains a formidable challenge due to the inherent high reactivity, transient lifetime of radical species, and presence of competing racemic background pathways. Addressing these limitations necessitates precise catalytic systems capable of orchestrating radical generation and enantioselective transformation in a controlled manner. In this Account, we systematically present our recent progress in enantioselective radical transformations mediated by chiral ,'-dioxide-metal complexes, which have previously been widely used in polar reactions. Our mechanistic investigations categorize these transformations into three distinct paradigms based on radical generation strategies. (1) Oxidant-driven radical generation: Leveraging oxidants─hypervalent iodine reagents, peroxides, or molecular oxygen─we achieved alkyl radical formation. By synergizing these oxidants with redox-active or redox-inert chiral '-dioxide-metal catalysts, we accomplished asymmetric difunctionalization of both electron-deficient and electron-rich olefins, alongside enantioselective radical cross-coupling reactions. (2) Merging photocatalytic strategy: Visible light irradiation facilitates the activation of metallic or organic photocatalysts (PCs), generating excited state species for redox or hydrogen atom transfer (HAT) processes. This enables the selective cleavage of inert C(sp)-H bonds in hydrocarbons or C(sp)-H bonds in aldehydes, producing diverse radical intermediates. Integration with chiral Lewis acid catalysts allows enantioselective radical additions to ketones, imines, and α,β-unsaturated carbonyl compounds, establishing C-C bonds under mild conditions without use of preactivated radical generators. Furthermore, energy-transfer photocatalysis combined with chiral Lewis acids promotes cyclization via C═C bond activation. Besides, an electron-shuttle strategy has been developed to balance radical generation from photoactive substrates, enabling asymmetric acylation and alkylation of aldimines. (3) Lewis acid-enabled substrate photoexcitation: We disclosed photocatalyst-free approaches wherein chiral ,'-dioxide-metal complexes modulate substrate photophysics. Chiral Lewis acid coordination with several carbonyls or imines alters their photochemical properties. Interestingly, this activation of some C═X unsaturated compounds under light enhances their reduction potentials for single electron transfer (SET) as a temporary oxidant, enabling direct radical alkylation of ketones/imines. Alternatively, the strategy can stabilize triplet excited states.Collectively, our studies elucidate mechanistic frameworks for stereocontrol in radical reactions, demonstrating the versatility of chiral Lewis acid catalysts in merging photocatalysis, radical chemistry, and C-H functionalization. The developed methodologies offer practical synthetic routes while addressing fundamental challenges in selectivity and efficiency. We envision that this Account will inspire further exploration of asymmetric radical systems, fostering advancements in catalytic diversity and mechanistic understanding.
概述
不对称催化自由基反应的战略实施已发展成为一种构建手性中心的复杂方法,这得益于自由基生成技术的显著进步。然而,由于自由基固有的高反应活性、短暂的寿命以及存在竞争性的外消旋背景反应途径,实现高立体选择性仍然是一项艰巨的挑战。解决这些限制需要精确的催化体系,能够以可控的方式协调自由基的生成和对映选择性转化。在本综述中,我们系统地介绍了我们最近在手性,'-二氧化物-金属配合物介导的对映选择性自由基转化方面的进展,这些配合物此前已广泛应用于极性反应。我们的机理研究根据自由基生成策略将这些转化分为三种不同的模式。(1)氧化剂驱动的自由基生成:利用氧化剂(高价碘试剂、过氧化物或分子氧),我们实现了烷基自由基的形成。通过将这些氧化剂与氧化还原活性或氧化还原惰性的手性 '-二氧化物-金属催化剂协同作用,我们完成了缺电子和富电子烯烃的不对称双官能化,以及对映选择性自由基交叉偶联反应。(2)光催化策略的融合:可见光照射促进金属或有机光催化剂(PCs)的活化,产生用于氧化还原或氢原子转移(HAT)过程的激发态物种。这使得能够选择性地裂解烃中的惰性C(sp)-H键或醛中的C(sp)-H键,生成各种自由基中间体。与手性路易斯酸催化剂结合,可实现对酮、亚胺和α,β-不饱和羰基化合物的对映选择性自由基加成,在温和条件下建立C-C键,而无需使用预活化的自由基发生器。此外,能量转移光催化与手性路易斯酸相结合可促进通过C═C键活化的环化反应。此外,还开发了一种电子穿梭策略来平衡光活性底物产生的自由基,实现醛亚胺的不对称酰化和烷基化。(3)路易斯酸促进的底物光激发:我们公开了无光催化剂的方法,其中手性,'-二氧化物-金属配合物调节底物的光物理性质。手性路易斯酸与几种羰基或亚胺的配位改变了它们的光化学性质。有趣的是,在光照下对一些C═X不饱和化合物的这种活化提高了它们作为临时氧化剂的单电子转移(SET)还原电位,使酮/亚胺能够直接进行自由基烷基化。或者,该策略可以稳定三重激发态。
总的来说,我们的研究阐明了自由基反应中立体控制的机理框架,展示了手性路易斯酸催化剂在融合光催化、自由基化学和C-H官能化方面的多功能性。所开发的方法提供了实用的合成路线,同时解决了选择性和效率方面的基本挑战。我们设想本综述将激发对不对称自由基体系的进一步探索,促进催化多样性和机理理解方面的进展。