Suppr超能文献

1型糖尿病患者中基于持续葡萄糖监测的60分钟血糖预测的种族差异。

Racial disparities in continuous glucose monitoring-based 60-min glucose predictions among people with type 1 diabetes.

作者信息

Thomsen Helene Bei, Li Livie Yumeng, Isaksen Anders Aasted, Lebiecka-Johansen Benjamin, Bour Charline, Fagherazzi Guy, van Doorn William P T M, Varga Tibor V, Hulman Adam

机构信息

Department of Public Health, Aarhus University, Aarhus, Denmark.

Steno Diabetes Center Aarhus, Aarhus, Denmark.

出版信息

PLOS Digit Health. 2025 Jun 30;4(6):e0000918. doi: 10.1371/journal.pdig.0000918. eCollection 2025 Jun.

Abstract

Non-Hispanic white (White) populations are overrepresented in medical studies. Potential healthcare disparities can happen when machine learning models, used in diabetes technologies, are trained on data from primarily White patients. We aimed to evaluate algorithmic fairness in glucose predictions. This study utilized continuous glucose monitoring (CGM) data from 101 White and 104 Black participants with type 1 diabetes collected by the JAEB Center for Health Research, US. Long short-term memory (LSTM) deep learning models were trained on 11 datasets of different proportions of White and Black participants and tailored to each individual using transfer learning to predict glucose 60 minutes ahead based on 60-minute windows. Root mean squared errors (RMSE) were calculated for each participant. Linear mixed-effect models were used to investigate the association between racial composition and RMSE while accounting for age, sex, and training data size. A median of 9 weeks (IQR: 7, 10) of CGM data was available per participant. The divergence in performance (RMSE slope by proportion) was not statistically significant for either group. However, the slope difference (from 0% White and 100% Black to 100% White and 0% Black) between groups was statistically significant (p = 0.02), meaning the RMSE increased 0.04 [0.01, 0.08] mmol/L more for Black participants compared to White participants when the proportion of White participants increased from 0 to 100% in the training data. This difference was attenuated in the transfer learned models (RMSE: 0.02 [-0.01, 0.05] mmol/L, p = 0.20). The racial composition of training data created a small statistically significant difference in the performance of the models, which was not present after using transfer learning. This demonstrates the importance of diversity in datasets and the potential value of transfer learning for developing more fair prediction models.

摘要

非西班牙裔白人(白人)群体在医学研究中的占比过高。当用于糖尿病技术的机器学习模型基于主要为白人患者的数据进行训练时,可能会出现潜在的医疗保健差异。我们旨在评估血糖预测中的算法公平性。本研究使用了美国JAEB健康研究中心收集的101名白人及104名黑人1型糖尿病患者的连续血糖监测(CGM)数据。长短期记忆(LSTM)深度学习模型在11个不同白人和黑人参与者比例的数据集上进行训练,并使用迁移学习针对每个个体进行定制,以根据60分钟的窗口预测提前60分钟的血糖。计算每个参与者的均方根误差(RMSE)。使用线性混合效应模型研究种族构成与RMSE之间的关联,同时考虑年龄、性别和训练数据大小。每位参与者可获得的CGM数据中位数为9周(四分位间距:7,10)。两组的性能差异(按比例的RMSE斜率)均无统计学意义。然而,两组之间的斜率差异(从0%白人及100%黑人到100%白人及0%黑人)具有统计学意义(p = 0.02),这意味着当训练数据中白人参与者的比例从0增加到100%时,黑人参与者的RMSE比白人参与者增加了0.04 [0.01,0.08] mmol/L。在迁移学习模型中,这种差异有所减弱(RMSE:0.02 [-0.01,0.05] mmol/L,p = 0.20)。训练数据的种族构成在模型性能上产生了一个小的统计学显著差异,而在使用迁移学习后这种差异不复存在。这证明了数据集中多样性的重要性以及迁移学习对于开发更公平预测模型的潜在价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b66/12208448/6d49cada1566/pdig.0000918.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验