Akiyama Sota, Ople Rohini S, Kremsmair Alexander, Ramos-Gonzalez Nokomis, Nedungadan Thomas, Kennedy Brandon J, Appourchaux Kevin, Eans Shainnel O, Tsai Bowen A, Kraml Christina, Huang Xi-Ping, McLaughlin Jay P, Majumdar Susruta, Sarpong Richmond
Department of Chemistry, University of California, Berkeley, CA 94720.
Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2425438122. doi: 10.1073/pnas.2425438122. Epub 2025 Jun 30.
Morphine is a µ-opioid receptor (MOR) agonist and potent analgesic. However, it displays several side effects including respiratory depression and addiction. Here, we show that a single heavy atom replacement in the morphine core structure (O to CH exchange in the E-ring) prepared through a 15-step total synthesis displays a different pharmacological profile. The total synthesis features an intramolecular inverse electron-demand Diels-Alder cycloaddition and a stereoselective Giese radical addition to construct a quaternary carbon center. Unlike morphine, where the (-)-morphine enantiomer binds the MOR, both enantiomers of this "carba" variant, which we have named carbamorphine, possess activity as agonists of the MOR. Cell-based functional assays show that (+)-carbamorphine shows reduced G-protein as well as β-arrestin efficacy at the MOR. In mouse behavioral assays, (+)-carbamorphine exhibits MOR-selective antinociception while showing reduced respiratory depression and a lack of conditioned place preference at supratherapeutic doses. Overall, through a net "single-atom" change (i.e., O to CH) in the morphine framework, different pharmacological profiles have been realized. This work provides a basis for additional syntheses and the study of morphine analogs that incorporate atom changes in the core framework.
吗啡是一种μ阿片受体(MOR)激动剂和强效镇痛药。然而,它会表现出多种副作用,包括呼吸抑制和成瘾性。在此,我们表明,通过15步全合成制备的吗啡核心结构中的单个重原子取代(E环中的O到CH交换)呈现出不同的药理学特征。全合成的特点是分子内逆电子需求的狄尔斯-阿尔德环加成反应和立体选择性的吉泽自由基加成反应,以构建一个季碳中心。与(-)-吗啡对映体结合MOR的吗啡不同,这种我们命名为卡巴吗啡的“卡巴”变体的两种对映体均具有作为MOR激动剂的活性。基于细胞的功能测定表明,(+)-卡巴吗啡在MOR上显示出降低的G蛋白以及β-抑制蛋白效能。在小鼠行为测定中,(+)-卡巴吗啡表现出MOR选择性抗伤害感受,同时在超治疗剂量下显示出降低的呼吸抑制和缺乏条件性位置偏爱。总体而言,通过吗啡骨架中的净“单原子”变化(即O到CH),实现了不同的药理学特征。这项工作为进一步合成以及研究在核心骨架中纳入原子变化的吗啡类似物提供了基础。