Suppr超能文献

使用BoneFinder对小儿脑瘫骨盆X光片进行全自动测量:利用国家监测数据库进行外部验证

Fully automated measurement of paediatric cerebral palsy pelvic radiographs with BoneFinder : external validation using a national surveillance database.

作者信息

Hughes Katie, Luzar Jessenka, Lang Jonathan, Perry Daniel C, Gaston Mark S

机构信息

The Royal Hospital for Children and Young People, Edinburgh, UK.

The University of Edinburgh, Edinburgh, UK.

出版信息

Bone Joint J. 2025 Jul 1;107-B(7):752-760. doi: 10.1302/0301-620X.107B7.BJJ-2024-1575.R1.

Abstract

AIMS

BoneFinder is a machine-learning tool that can automatically calculate Reimers migration percentage (RMP) and head-shaft angle (HSA) from paediatric cerebral palsy (CP) pelvic radiographs. This study's primary aim was to compare BoneFinder's fully automated measurements to manual measurements made by clinicians and HipScreen-assisted measurements made by clinicians.

METHODS

Using the radiological database within Cerebral Palsy Integrated Care Pathway Scotland (CPIPS), BoneFinder's automatic RMP and HSA measurements were compared across the same set of radiographs to: routine manual measurements performed by clinical experts from the CPIPS database; additional manual measurements performed by two clinicians; and measurements performed by the same two clinicians using the smartphone application HipScreen.

RESULTS

A total of 509 anteroposterior pelvic radiographs (1,018 hips; mean age 7.4 years (1 to 17)) were selected at random from the CPIPS database. Gross Motor Function Classification System levels were I (n = 69), II (n = 37), III (n = 97), IV (n = 120), and V (n = 186). The mean absolute difference (MAD) in RMP between BoneFinder and CPIPS measurements, manual measurements, and HipScreen was 7.6% (SD 10.0%), 5.5% (SD 9.1%), and 5.8% (SD 9.2%), respectively. Interobserver reliability of RMP measurement across all methods was excellent (intraclass correlation coefficient (ICC) 0.89 (95% CI 0.87 to 0.91); p < 0.001). Good ICC was found between BoneFinder and CPIPS measurements (ICC 0.80 (95% CI 0.65 to 0.87); p < 0.001). The area under the receiver operating characteristic curve for BoneFinder's ability to detect a hip with a RMP ≥ 30%/40%/50% was 0.95/0.97/0.98, respectively. ICC of HSA measurement across all raters was moderate (ICC 0.72 (95% CI 0.67 to 0.76); p < 0.001). Image artefact was present in 138 of 1,018 hips (14%). In these images, MAD increased and ICC decreased for both RMP and HSA measurement between BoneFinder and CPIPS, indicating a decline in agreement.

CONCLUSION

Fully automated RMP and HSA measurements using BoneFinder were highly reliable with clinically acceptable measurement error. Further refinement of BoneFinder is required for analysis of radiographs with artefact.

摘要

目的

BoneFinder是一种机器学习工具,可从儿科脑瘫(CP)骨盆X光片中自动计算赖默斯移位百分比(RMP)和头干角(HSA)。本研究的主要目的是将BoneFinder的全自动测量结果与临床医生的手动测量结果以及临床医生使用HipScreen辅助进行的测量结果进行比较。

方法

利用苏格兰脑瘫综合护理路径(CPIPS)中的放射学数据库,将BoneFinder对同一组X光片的自动RMP和HSA测量结果与以下各项进行比较:CPIPS数据库中临床专家进行的常规手动测量;两名临床医生进行的额外手动测量;以及这两名临床医生使用智能手机应用程序HipScreen进行的测量。

结果

从CPIPS数据库中随机选取了509张骨盆前后位X光片(1018个髋关节;平均年龄7.4岁(1至17岁))。粗大运动功能分类系统水平为I级(n = 69)、II级(n = 37)、III级(n = 97)、IV级(n = 120)和V级(n = 186)。BoneFinder与CPIPS测量、手动测量和HipScreen测量的RMP平均绝对差值(MAD)分别为7.6%(标准差10.0%)、5.5%(标准差9.1%)和5.8%(标准差9.2%)。所有方法的RMP测量的观察者间可靠性极佳(组内相关系数(ICC)0.89(95%置信区间0.87至0.91);p < 0.001)。BoneFinder与CPIPS测量之间的ICC良好(ICC 0.80(95%置信区间0.65至0.87);p < 0.001)。BoneFinder检测RMP≥30%/40%/50%髋关节的受试者工作特征曲线下面积分别为0.95/0.97/0.98。所有评估者的HSA测量ICC为中等(ICC 0.72(95%置信区间0.67至0.76);p < 0.001)。1018个髋关节中有138个(14%)存在图像伪影。在这些图像中,BoneFinder与CPIPS之间的RMP和HSA测量的MAD增加,ICC降低,表明一致性下降。

结论

使用BoneFinder进行的全自动RMP和HSA测量高度可靠,测量误差在临床可接受范围内。对于有伪影的X光片分析,需要对BoneFinder进行进一步优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验