Suppr超能文献

界面工程核壳量子点实现聚合物纳米电介质中的载流子限制用于高压直流应用。

Interface-Engineered Core-Shell Quantum Dots Enable Carrier Confinement in Polymer Nanodielectrics for High-Voltage Direct Current Applications.

作者信息

Wang Heyu, Li Zhonglei, Yang Zechao, Wu You, Zheng Zhong, Cao Guozheng, Yin Yifan, Zhao Shuai, Du Boxue

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

State Key Laboratory of Intelligent Power Distribution Equipment and System, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 16;17(28):41002-41014. doi: 10.1021/acsami.5c05811. Epub 2025 Jun 30.

Abstract

Reliable polymer dielectrics are critical for high-voltage direct current (HVDC) power transmission, but their performance is fundamentally limited by detrimental charge carrier migration, particularly under the extreme electric fields and elevated temperatures encountered in service. This study addresses these challenges by engineering novel polymer nanodielectrics based on polyethylene (PE) modified with CdSe@ZnS core-shell quantum dots (QDs). Nanocomposites are fabricated via a solvent-assisted blending method, with homogeneous QD dispersion confirmed through microstructural analyses. The optimized 0.10 wt % QD-modified PE achieves a 59.2% reduction in DC conductivity at 30 °C and 70.2% reduction at 90 °C, alongside a 25.1% improvement in breakdown strength at 90 °C. Thermally stimulated depolarization current (TSDC) spectra reveal that core-shell QDs introduce deep trap energy levels at 1.007-1.036 eV (ZnS shell) and 1.060-1.075 eV (CdSe core), which dominate charge absorption under high fields. First-principles calculations uncover interfacial energy barriers of 0.69 eV (electron) and 0.47 eV (hole) at the CdSe/ZnS interface and of 5.31 eV (electron) and 0.95 eV (hole) at the ZnS/PE interface. These potential wells effectively localize carriers through dual mechanisms: deep trapping at the high-barrier ZnS/PE interface and quantum confinement within the CdSe core. The high energy barriers effectively inhibit carrier escape from the QD-based traps, while the discrete and isolated energy levels of well-dispersed QDs prevent detrimental inter-QD tunneling pathways. However, at excessive QD concentrations (>0.15 wt %), reduced interparticle distance leads to significant overlapping, diminishing the confinement efficacy through barrier weakening and enhanced tunneling, resulting in increased conductivity and reduced breakdown strength. This work establishes core-shell QDs as a transformative tool for engineering polymer nanodielectrics to enable next-generation HVDC insulation materials capable of withstanding extreme operational stress.

摘要

可靠的聚合物电介质对于高压直流(HVDC)输电至关重要,但其性能从根本上受到有害电荷载流子迁移的限制,尤其是在实际应用中遇到的极端电场和高温条件下。本研究通过设计基于用CdSe@ZnS核壳量子点(QDs)改性的聚乙烯(PE)的新型聚合物纳米电介质来应对这些挑战。纳米复合材料通过溶剂辅助共混法制备,并通过微观结构分析确认了量子点的均匀分散。优化后的0.10 wt%量子点改性聚乙烯在30°C时直流电导率降低59.2%,在90°C时降低70.2%,同时在90°C时击穿强度提高25.1%。热刺激去极化电流(TSDC)光谱表明,核壳量子点在1.007 - 1.036 eV(ZnS壳层)和1.060 - 1.075 eV(CdSe核)处引入了深陷阱能级,这些能级在高场下主导电荷吸收。第一性原理计算揭示了CdSe/ZnS界面处的界面能垒为0.69 eV(电子)和0.47 eV(空穴),ZnS/PE界面处的界面能垒为5.31 eV(电子)和0.95 eV(空穴)。这些势阱通过双重机制有效地捕获载流子:在高势垒的ZnS/PE界面处进行深捕获以及在CdSe核内进行量子限制。高能量势垒有效地抑制了载流子从基于量子点的陷阱中逸出,而分散良好的量子点的离散和孤立能级则阻止了有害的量子点间隧穿路径。然而,在量子点浓度过高(>0.15 wt%)时,颗粒间距离减小会导致显著重叠,通过势垒减弱和隧穿增强降低了限制效果,从而导致电导率增加和击穿强度降低。这项工作确立了核壳量子点作为工程聚合物纳米电介质的变革性工具,以实现能够承受极端运行应力的下一代高压直流绝缘材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验