Luo Lu, Zhang Qianqian, Shi Diwei, Fan Mizi, Du Guanben, Tian Xuesong, Zhao Weigang
School of Naval Architecture and Maritime, Zhejiang Ocean University, 1 Haidanan Road, Zhoushan, 316022, P. R. China.
College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou, 350002, P. R. China.
Small. 2025 Aug;21(34):e2505143. doi: 10.1002/smll.202505143. Epub 2025 Jul 1.
Nickel-cobalt layered double hydroxides (NiCo-LDHs) are considered highly promising electrode materials for supercapacitors (SCs). Nevertheless, their limited conductivity and inherent stacking defects lead to inactive electronic states, thereby constraining their electrochemical performance. Here, a dual-conductive-engineered flexible electrode is fabricated through synergistic integration of in situ constructed 3D porous LDH with TiCT nanosheets deposition, establishing a semi-confined reaction microenvironment. The collaborative conductive architecture and confinement-enhanced effects enable continuous modulation of Faradaic reaction kinetics during charge/discharge processes, achieving breakthrough improvements in both energy density and cycling stability. The optimized TiCT/LDH/CC-50 electrode delivers a remarkable specific capacitance of 1598.7 F g⁻¹ at 1 A g⁻¹, along with excellent rate performance of 87.2% (10 A g). Furthermore, the constructed aqueous asymmetric supercapacitor (ASC) delivers an impressive energy density of 72.4 Wh kg¹ and remarkable cycling stability (90.5% retention after 10 000 cycles). A flexible solid-state asymmetric SC (FSASC) is also fabricated, showcasing a significant energy density of 83.9 Wh kg¹ at 900 W kg¹ with excellent mechanical flexibility. DFT simulations further revealed enhanced electron transport and a greater number of active sites due to the reduced energy barrier. This work contributes new insights into the structural design of LDH/MXene nanohybrid electrodes for advanced energy density supercapacitors.
镍钴层状双氢氧化物(NiCo-LDHs)被认为是超级电容器(SCs)极具前景的电极材料。然而,其有限的导电性和固有的堆积缺陷会导致电子态不活跃,从而限制其电化学性能。在此,通过将原位构建的三维多孔LDH与TiCT纳米片沉积协同整合,制造了一种双导电工程化柔性电极,建立了半封闭反应微环境。协同导电结构和限域增强效应能够在充放电过程中持续调节法拉第反应动力学,在能量密度和循环稳定性方面均实现了突破性提升。优化后的TiCT/LDH/CC-50电极在1 A g⁻¹时具有1598.7 F g⁻¹的显著比电容,以及87.2%(10 A g)的优异倍率性能。此外,构建的水系不对称超级电容器(ASC)具有72.4 Wh kg⁻¹的可观能量密度和出色的循环稳定性(10000次循环后保持率为90.5%)。还制造了一种柔性固态不对称超级电容器(FSASC),在900 W kg⁻¹时展现出83.9 Wh kg⁻¹的显著能量密度以及出色的机械柔韧性。密度泛函理论(DFT)模拟进一步揭示,由于能垒降低,电子传输增强且活性位点增多。这项工作为用于高能量密度超级电容器的LDH/MXene纳米复合电极的结构设计提供了新的见解。