Lohani Prakash Chandra, Tiwari Arjun Prasad, Chhetri Kisan, Muthurasu Alagan, Dahal Bipeen, Chae Su-Hyeong, Ko Tae Hoon, Lee Jun Youb, Chung Yong Sik, Kim Hak Yong
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal.
ACS Appl Mater Interfaces. 2022 May 12. doi: 10.1021/acsami.1c24585.
The structural design of transition metal-based electrode materials with gigantic energy storage capabilities is a crucial task. In this work, we report an assembly of thin layered double hydroxide (LDH) nanosheets arrayed throughout the luminal and abluminal parts of polypyrrole tunnels fastened onto both sides of a carbon cloth as a battery-type energy storage system. Electron microscopy images reveal that the resulting electrode (NiCo-LDH@H-PPy@CC, where H-PPy@CC represents carbon cloth-supported hollow polypyrrole fibers) is constructed by combining luminal and abluminal NiCo-LDH nanosheets onto a long polypyrrole tunnel on a carbon cloth. The primary sample shows an excellent specific capacity of 149.16 mAh g at 1.0 mA cm, a remarkable rate capability of 80.45%, and comprehensive cyclic stability (93.4%). The improved performance is mainly attributed to the strategic organization of the electrode materials with superior Brunauer-Emmett-Teller (BET) surface area and conductivity. Moreover, an asymmetric supercapacitor device assembled with NiCo-LDH@H-PPy@CC and vanadium phosphate-incorporated carbon nanofiber (VPO@CNFs900) electrodes contributes a specific energy density of 32.42 Wh kg at 3 mA cm with a specific power density of 359.16 W kg. When the current density is increased by 6-fold, the specific power density reaches 1999.89 W kg at a specific energy density of 20.06 Wh kg. This is a simple, cost-effective, and convenient synthetic strategy for the synthesis of porous nanosheet arrays assimilated into hollow fiber architectures, which can illuminate the ideal approach for the fabrication of novel materials with an immense potential for energy storage.
设计具有巨大储能能力的过渡金属基电极材料的结构是一项至关重要的任务。在这项工作中,我们报道了一种组装的薄层状双氢氧化物(LDH)纳米片阵列,其排列在固定于碳布两侧的聚吡咯隧道的管腔和管腔外部分,作为一种电池型储能系统。电子显微镜图像显示,所得电极(NiCo-LDH@H-PPy@CC,其中H-PPy@CC代表碳布支撑的中空聚吡咯纤维)是通过将管腔和管腔外的NiCo-LDH纳米片结合到碳布上的长聚吡咯隧道上构建而成。原始样品在1.0 mA cm时显示出149.16 mAh g的优异比容量、80.45%的显著倍率性能和综合循环稳定性(93.4%)。性能的提高主要归因于具有优异的布鲁诺尔-埃米特-泰勒(BET)表面积和导电性的电极材料的策略性组织。此外,由NiCo-LDH@H-PPy@CC和掺有磷酸钒的碳纳米纤维(VPO@CNFs900)电极组装而成的不对称超级电容器装置在3 mA cm时的比能量密度为32.42 Wh kg,比功率密度为359.16 W kg。当电流密度增加6倍时,在比能量密度为20.06 Wh kg时,比功率密度达到1999.89 W kg。这是一种用于合成融入中空纤维结构的多孔纳米片阵列的简单、经济高效且便捷的合成策略,可为制备具有巨大储能潜力的新型材料指明理想途径。