Suppr超能文献

晶粒细化和多孔结构促进了用于具有更高功率和耐久性的电池型混合超级电容器的金属有机框架衍生的CoP@C中的电荷传输和速率动力学。

Grain Refinement and Porous Architecture Boost Charge Transport and Rate Kinetics in MOF-Derived CoP@C for Battery-Type Hybrid Supercapacitors with Improved Power and Durability.

作者信息

Xing Hongna, Wang Luyao, Feng Juan, Liu Yanan, He Weijun, Zong Yan, Li Xinghua, Zhu Xiuhong, Zheng Xinliang

机构信息

School of Physics, State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an 710069, China.

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43454-43464. doi: 10.1021/acsami.5c09573. Epub 2025 Jul 22.

Abstract

Metal phosphides have emerged as competitive candidates for supercapacitors owing to their metallic conductivity and ultrahigh theoretical capacitance. Nevertheless, their practical implementation is hindered by sluggish reaction kinetics and structural degradation during cycling. Herein, we propose a synergistic strategy integrating grain refinement and hierarchical porosity design through pyrolysis of ZIF-67, fabricating structurally optimized CoO@C and CoP@C electrode materials. The carbon skeleton inherits the hierarchical porous polyhedral structure of ZIF-67, while the confinement effect of the carbon matrix ensures the formation of ultrasmall CoO/CoP nanoparticles. This architecture offers dual advantages: (1) interconnected carbon channels facilitate rapid ion/charge transport, and (2) ultrasmall nanoparticles maximize active sites for redox reactions. Notably, the CoP@C electrode delivers remarkable areal capacitance (343.1 mC cm/902.0 mF cm at 1 mA cm) and rate retention (87.8% at 10 mA cm), surpassing the CoO@C counterpart by 1.5-fold and 1.2-fold, respectively. Advanced Amplitude modulation-Kelvin probe force microscopy (AM-KPFM) analysis reveals that CoP@C possesses a reduced surface potential (ΔΨ = 11.6 mV) in CoP@C compared to that in CoO@C (20.5 mV), displaying faster interfacial charge transfer kinetics. Density functional theory (DFT) calculations further elucidate interfacial electron redistribution, where electron donation from carbon to CoO or CoP. CoP@C behaves with a lower work function (4.8 eV) and closer d-band center positions (-1.47 eV vs Fermi level) than CoO@C (5.4, -1.67 eV), thereby optimizing the adsorption energetics of electrolyte ions and reducing charge transfer resistance. Assembled asymmetric supercapacitors (CoP@C//AC) achieve a high energy density of 46.8 Wh kg at 1696.7 W kg, with ultralong cyclability (91.3% retention after 10,000 cycles), surpassing most reported metal phosphide-based devices. This work highlights the synergy between grain refinement and porous architecture engineering in enhancing charge transport and rate kinetics, providing a viable strategy to improve the power density and cycling stability of metal phosphide-based electrodes for advanced energy storage devices.

摘要

由于金属磷化物具有金属导电性和超高的理论电容,已成为超级电容器的有力候选材料。然而,其实际应用受到循环过程中缓慢的反应动力学和结构降解的阻碍。在此,我们提出一种协同策略,通过对ZIF-67进行热解,将晶粒细化和分级孔隙率设计相结合,制备结构优化的CoO@C和CoP@C电极材料。碳骨架继承了ZIF-67的分级多孔多面体结构,而碳基体的限域效应确保了超小CoO/CoP纳米颗粒的形成。这种结构具有双重优势:(1)相互连接的碳通道促进离子/电荷的快速传输,(2)超小纳米颗粒使氧化还原反应的活性位点最大化。值得注意的是,CoP@C电极在1 mA cm时具有显著的面积电容(343.1 mC cm/902.0 mF cm)和倍率保持率(在10 mA cm时为87.8%),分别比CoO@C电极高出1.5倍和1.2倍。先进的振幅调制-开尔文探针力显微镜(AM-KPFM)分析表明,与CoO@C(20.5 mV)相比,CoP@C的表面电位降低(ΔΨ = 11.6 mV),显示出更快的界面电荷转移动力学。密度泛函理论(DFT)计算进一步阐明了界面电子重新分布,即从碳到CoO或CoP的电子捐赠。CoP@C的功函数较低(4.8 eV),d带中心位置比CoO@C(5.4,-1.67 eV)更接近费米能级(-1.47 eV),从而优化了电解质离子的吸附能并降低了电荷转移电阻。组装的不对称超级电容器(CoP@C//AC)在1696.7 W kg时实现了46.8 Wh kg的高能量密度,具有超长的循环稳定性(10000次循环后保持率为91.3%),超过了大多数报道的基于金属磷化物的器件。这项工作突出了晶粒细化和多孔结构工程在增强电荷传输和倍率动力学方面的协同作用,为提高先进储能器件中基于金属磷化物的电极的功率密度和循环稳定性提供了一种可行的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验