Sowards Katelyn, Reveles J, Medina Hector
School of Engineering, Liberty University, 1971 University Blvd, Lynchburg, VA, 24515, USA.
John Hopkins Center for Talented Youth, 5801 Smith Ave #400, Baltimore, MD, 21209, USA.
Small Methods. 2025 Aug;9(8):e2500168. doi: 10.1002/smtd.202500168. Epub 2025 Jul 1.
This report outlines a novel, facile process for the transformation of hierarchical enhanced surface area structures (HESAS) of titanium sulfate into titania. The transformation process preserves the HESAS morphology while providing tunable enhanced properties, based on the phase and degree of transformation. To demonstrate our process, a controlled thermo-chemical transformation strategy is implemented using four maximum temperatures (650, 750, 850, and 950 °C) in natural air or argon-rich environments, under various heating rates, and for two types of precursor HESAS. The resulting titania HESAS are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (XRD). Furthermore, both ab initio and semi-empirical quantum mechanics computational studies are conducted to provide insights into the diffusion mechanisms involved and the associated energetics. The transformed materials exhibit retention of the hierarchical features from the precursor HESAS. Furthermore, the degree of anatase or rutile formed is controlled based on the thermal kinetics of the process. Computational studies show that SO release is the main mechanism underlying the transformation, with the removal energy barrier increasing with the number of SO released. This work reveals a pathway for a scalable, low-cost manufacturing process for the design and fabrication of advanced titania-based photocatalytic materials with tailored properties.
本报告概述了一种将硫酸钛的分级增强表面积结构(HESAS)转化为二氧化钛的新颖、简便方法。该转化过程在保留HESAS形态的同时,根据转化的相和程度提供可调节的增强性能。为了展示我们的方法,在自然空气或富氩环境中,使用四种最高温度(650、750、850和950°C),在不同加热速率下,对两种类型的前驱体HESAS实施了可控热化学转化策略。使用扫描电子显微镜(SEM)、能量色散光谱(EDS)和薄膜X射线衍射(XRD)对所得的二氧化钛HESAS进行表征。此外,还进行了从头算和半经验量子力学计算研究,以深入了解所涉及的扩散机制和相关能量学。转化后的材料保留了前驱体HESAS的分级特征。此外,根据该过程的热动力学控制锐钛矿或金红石的形成程度。计算研究表明,SO释放是转化的主要机制,去除能垒随着释放的SO数量增加而增加。这项工作揭示了一条用于设计和制造具有定制性能的先进二氧化钛基光催化材料的可扩展、低成本制造工艺的途径。