Suppr超能文献

设计缺陷型钛和铋硫族化合物:通过空位工程和外在原子掺入洞察结构-性能关系及器件制造

Designer-Defective Titanium and Bismuth Chalcogenides: Insights into Structure-Property Relationships and Device Fabrication via Vacancy Engineering and Extrinsic Atom Incorporation.

作者信息

Miller Edwin J, Whittaker-Brooks Luisa

机构信息

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 16;17(28):39772-39794. doi: 10.1021/acsami.5c03153. Epub 2025 Jul 1.

Abstract

Titanium and bismuth chalcogenides exhibit a wide range of intriguing optical, electronic, and magnetic properties governed by their crystal structure and electronic configurations. These properties can be fine-tuned by deliberately manipulating defects and incorporating extrinsic atoms within their frameworks. Such structural and electronic modifications not only influence the intrinsic behavior of these materials but also offer alternative pathways for optimizing their performance for advanced applications. A comprehensive understanding of the interplay between size constraints, defects, and extrinsic atom integration is essential for the continued development of these systems and their use in functional devices. This review focuses on our synthetic strategies to engineer defects and incorporate extrinsic chalcogen atoms into low-dimensional metal chalcogenides, specifically in bismuth- and titanium-based chalcogenides. Precise structural and compositional modifications to these compounds lead to significant changes in their electronic and crystal properties, providing valuable insights into defect chemistry and its impact on material behavior. These findings are particularly relevant given the natural applicability of low-dimensional metal chalcogenides in various functional devices, including optoelectronics, thermoelectrics, and energy storage systems. Herein, we aim to establish a detailed correlation between the fundamental structure-property relationships and the resulting device performance, emphasizing the critical role of defects and extrinsic atomic engineering in unlocking the full potential of metal chalcogenide systems. This review not only underscores the versatility of these materials but also serves as a foundation for future efforts to design and optimize next-generation devices based on tailored low-dimensional compounds.

摘要

钛和铋的硫族化合物展现出一系列受其晶体结构和电子构型支配的有趣光学、电子和磁性特性。通过有意操控缺陷并在其结构框架内引入外来原子,这些特性可以得到微调。这种结构和电子修饰不仅影响这些材料的固有行为,还为优化其在先进应用中的性能提供了替代途径。全面理解尺寸限制、缺陷和外来原子整合之间的相互作用对于这些体系的持续发展及其在功能器件中的应用至关重要。本综述聚焦于我们设计缺陷并将外来硫族原子引入低维金属硫族化合物(特别是铋基和钛基硫族化合物)的合成策略。对这些化合物进行精确的结构和组成修饰会导致其电子和晶体性质发生显著变化,为缺陷化学及其对材料行为的影响提供了有价值的见解。鉴于低维金属硫族化合物在包括光电子学、热电学和能量存储系统在内的各种功能器件中的自然适用性,这些发现尤为重要。在此,我们旨在建立基本结构 - 性质关系与所得器件性能之间的详细关联,强调缺陷和外来原子工程在释放金属硫族化合物体系全部潜力方面的关键作用。本综述不仅强调了这些材料的多功能性,还为未来基于定制低维化合物设计和优化下一代器件的努力奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验