Mohammed Wael W, Gassem Fakhr, Sidaoui Rabeb, Vokhmintsev Aleksander, Khater Mostafa M A
Department of Mathematics, College of Science, University of Ha'il, Ha'il, 2440, Saudi Arabia.
Institute of Information Technology, Chelyabinsk State University, Chelyabinsk, Russia.
Sci Rep. 2025 Jul 1;15(1):22377. doi: 10.1038/s41598-025-03938-0.
This investigation undertakes a detailed exploration of the nonlinear time-fractional Bogoyavlenskii-Kadomtsev-Petviashvili ([Formula: see text]) equation, emphasizing its behavioral characteristics and applications in fluid dynamics, plasma physics, and wave propagation phenomena. The [Formula: see text] framework generalizes conventional nonlinear evolution equations, providing a more nuanced representation of wave dynamics in dispersive and dissipative media. Through the complementary application of the Khater III method and an enhanced Kudryashov technique, we derive closed-form solutions and rigorously validate them via numerical implementation of He's variational iteration approach. Our analysis uncovers intricate solution behaviors, including nonlinear wave interactions and resonance dynamics within fractional-order temporal frameworks. The results substantiate the [Formula: see text] model's ability to characterize physical systems governed by fractional time evolution, thereby connecting classical wave theory with contemporary fractional calculus formulations. The integration of analytical and computational methodologies produces high-precision solutions that faithfully reproduce the system's intrinsic physical attributes. This work advances the theoretical underpinnings of fractional differential equations and their utility in modeling non-integer order wave phenomena. Additionally, we conduct an exhaustive examination of the [Formula: see text] system, clarifying its evolutionary dynamics through bifurcation analysis, characterization of chaotic/quasi-periodic regimes, and assessment of parameter sensitivity. The primary objective is to illuminate the governing mechanisms of the system's temporal evolution using advanced mathematical tools rooted in nonlinear dynamical theory.
本研究对非线性时间分数阶博戈亚夫连斯基 - 卡多姆采夫 - 彼得维谢夫利([公式:见原文])方程进行了详细探讨,着重研究其在流体动力学、等离子体物理学和波传播现象中的行为特征及应用。[公式:见原文]框架推广了传统的非线性演化方程,为色散和耗散介质中的波动动力学提供了更细致入微的表示。通过结合使用哈特三世方法和改进的库德里亚绍夫技术,我们推导出了封闭形式的解,并通过何氏变分迭代法的数值实现对其进行了严格验证。我们的分析揭示了复杂的解行为,包括分数阶时间框架内的非线性波相互作用和共振动力学。结果证实了[公式:见原文]模型刻画由分数时间演化支配的物理系统的能力,从而将经典波动理论与当代分数阶微积分公式联系起来。解析方法与计算方法的结合产生了高精度的解,忠实地再现了系统的内在物理属性。这项工作推进了分数阶微分方程的理论基础及其在非整数阶波动现象建模中的应用。此外,我们对[公式:见原文]系统进行了详尽研究,通过分岔分析、混沌/准周期区域的刻画以及参数敏感性评估来阐明其演化动力学。主要目标是使用基于非线性动力学理论的先进数学工具来阐明系统时间演化的控制机制。