利用深度学习对微槽上的细胞核进行聚类以用于疾病诊断。

Clustering cell nuclei on microgrooves for disease diagnosis using deep learning.

作者信息

Roellinger Bettina, Thenier Francois, Leclech Claire, Coirault Catherine, Angelini Elsa, Barakat Abdul I

机构信息

Laboratoire d'hydrodynamique, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.

LTCI, Telecom Paris, Institut Mines-Telecom, Institut Polytechnique de Paris, 91120, Palaiseau, France.

出版信息

Sci Rep. 2025 Jul 2;15(1):22476. doi: 10.1038/s41598-025-05788-2.

Abstract

Various diseases including laminopathies and certain types of cancer are associated with abnormal nuclear mechanical properties that influence cellular and nuclear deformations in complex environments. Recently, microgroove substrates designed to mimic the anisotropic topography of the basement membrane have been shown to induce 3D nuclear deformations in various adherent cell types. Importantly, these deformations are different in myoblasts derived from laminopathy patients from those in cells derived from normal individuals. Here we assess the ability of a Variational Autoencoder (VAE) and a Gaussian Mixture Model (GMM) to cluster patches of nuclei of both wildtype myoblasts and myoblasts with laminopathy-associated mutations cultured on microgroove substrates, and we explore the impact of image processing parameters on clustering performance. We show that a standard VAE with GMM is able to cluster nuclei based on their morphologies and degrees of deformations and that these clusters correspond to either wildtype myoblasts or myoblasts with LMNA mutations. The current results suggest that combining deep learning techniques with microgroove substrates enables automatic classification of nuclear deformations and thus provides a promising approach for easy and rapid diagnosis of pathologies that involve abnormalities in nuclear deformation.

摘要

包括核纤层蛋白病和某些类型癌症在内的多种疾病都与异常的核力学特性相关,这些特性会影响复杂环境中的细胞和核变形。最近,设计用于模拟基底膜各向异性拓扑结构的微槽基板已被证明能在各种贴壁细胞类型中诱导三维核变形。重要的是,来自核纤层蛋白病患者的成肌细胞中的这些变形与来自正常个体的细胞中的变形不同。在这里,我们评估变分自编码器(VAE)和高斯混合模型(GMM)对在微槽基板上培养的野生型成肌细胞和具有核纤层蛋白病相关突变的成肌细胞核斑块进行聚类的能力,并探讨图像处理参数对聚类性能的影响。我们表明,带有GMM的标准VAE能够根据核的形态和变形程度对核进行聚类,并且这些聚类对应于野生型成肌细胞或具有LMNA突变的成肌细胞。目前的结果表明,将深度学习技术与微槽基板相结合能够实现核变形的自动分类,从而为简便快速诊断涉及核变形异常的病症提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索