Suppr超能文献

利用多模态深度学习和人工智能进行中国古典文学的跨语言传播。

Cross-language dissemination of Chinese classical literature using multimodal deep learning and artificial intelligence.

作者信息

Bai Yulan, Lei Songhua

机构信息

School of Foreign Languages, East China University of Technology, Nanchang, 330000, China.

Graduate School of Health Systems, Okayama University, Okayama, 700-8530, Japan.

出版信息

Sci Rep. 2025 Jul 1;15(1):21648. doi: 10.1038/s41598-025-05921-1.

Abstract

Against the backdrop of rapid advancements in artificial intelligence (AI), multimodal deep learning (DL) technologies offer new possibilities for cross-language translation. This work proposes a multimodal DL-based translation model, the Transformer-Multimodal Neural Machine Translation (TMNMT), to promote the cross-language dissemination and comprehension of Chinese classical literature. The proposed model innovatively integrates visual features generated by conditional diffusion models and leverages knowledge distillation techniques to achieve efficient transfer learning, fully exploiting the latent information in multilingual corpora. The work designs a gated neural unit-based multimodal feature fusion mechanism and a decoder-based visual feature attention module to enhance translation performance, thus dynamically combining textual and visual information. Experimental results demonstrate that TMNMT significantly outperforms baseline models in multimodal and text-only translation tasks. It achieves a BLEU score of 39.2 on the Chinese literature dataset, a minimum improvement of 1.55% over other models, and a METEOR score of 64.8, with a minimum improvement of 8.14%. Moreover, incorporating the decoder's visual module notably boosts performance, with BLEU and METEOR scores on the En-Ge Test2017 task improving by 2.55% and 2.33%, respectively. This work provides technical support for the multilingual dissemination of Chinese classical literature and broadens the application prospects of AI in cultural domains.

摘要

在人工智能(AI)快速发展的背景下,多模态深度学习(DL)技术为跨语言翻译提供了新的可能性。这项工作提出了一种基于多模态DL的翻译模型,即Transformer-多模态神经机器翻译(TMNMT),以促进中国古典文学的跨语言传播和理解。所提出的模型创新性地整合了条件扩散模型生成的视觉特征,并利用知识蒸馏技术实现高效的迁移学习,充分挖掘多语言语料库中的潜在信息。这项工作设计了一种基于门控神经单元的多模态特征融合机制和一个基于解码器的视觉特征注意力模块来提高翻译性能,从而动态地结合文本和视觉信息。实验结果表明,TMNMT在多模态和纯文本翻译任务中显著优于基线模型。它在中国文学数据集上的BLEU分数达到39.2,比其他模型至少提高了1.55%,METEOR分数达到64.8,至少提高了8.14%。此外,加入解码器的视觉模块显著提高了性能,在En-Ge Test2017任务上的BLEU和METEOR分数分别提高了2.55%和2.33%。这项工作为中国古典文学的多语言传播提供了技术支持,并拓宽了AI在文化领域的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验