Suppr超能文献

零膨胀负二项回归模型的新双参数混合估计器。

New two parameter hybrid estimator for zero inflated negative binomial regression models.

作者信息

Almulhim Fatimah A, Nagy M, Hammad Ali T, Mansi A H, Mekiso Getachew Tekle, El-Raouf M M Abd

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 1;15(1):21239. doi: 10.1038/s41598-025-06116-4.

Abstract

The zero-inflated negative binomial regression (ZINBR) model is used for modeling count data that exhibit both overdispersion and zero-inflated counts. However, a persistent challenge in the efficient estimation of parameters within ZINBR models is the issue of multicollinearity, where high correlations between predictor variables can compromise the stability and reliability of the maximum likelihood estimator (MLE). We propose a new two-parameter hybrid estimator, designed for the ZINBR model, to address this problem. This estimator aims to mitigate the effects of multicollinearity by incorporating a combination of existing biased estimators. To test the effectiveness of the proposed estimator, we conduct a comprehensive theoretical comparison with conventional biased estimators, including the Ridge and Liu, the Kibria-Lukman, and the modified Ridge estimators. An extended Monte Carlo simulation study complements the theoretical results, evaluating the estimator's performance under various multicollinearity conditions. The simulation results, evaluated by metrics such as mean squared error (MSE) and mean absolute error (MAE), show that the proposed hybrid estimator consistently outperforms conventional methods, especially in high multicollinearity. Furthermore, we apply it to two real-world datasets. The experimental application demonstrates the superior performance of the estimator in producing stable and accurate parameter estimates. The simulation study and experimental application results strongly suggest that the new two-parameter hybrid estimator offers significant progress in parameter estimation in ZINBR models, especially in complex scenarios due to multicollinearity.

摘要

零膨胀负二项回归(ZINBR)模型用于对呈现过度离散和零膨胀计数的计数数据进行建模。然而,在ZINBR模型中有效估计参数时,一个持续存在的挑战是多重共线性问题,即预测变量之间的高相关性会损害最大似然估计器(MLE)的稳定性和可靠性。我们提出了一种针对ZINBR模型设计的新的双参数混合估计器来解决这个问题。该估计器旨在通过结合现有有偏估计器的组合来减轻多重共线性的影响。为了测试所提出估计器的有效性,我们与传统有偏估计器进行了全面的理论比较,包括岭估计和刘估计、基布里亚 - 卢曼估计以及改进的岭估计。一项扩展的蒙特卡罗模拟研究补充了理论结果,评估了该估计器在各种多重共线性条件下的性能。通过均方误差(MSE)和平均绝对误差(MAE)等指标评估的模拟结果表明,所提出的混合估计器始终优于传统方法,尤其是在高多重共线性情况下。此外,我们将其应用于两个实际数据集。实验应用证明了该估计器在产生稳定和准确的参数估计方面的卓越性能。模拟研究和实验应用结果强烈表明,新的双参数混合估计器在ZINBR模型的参数估计方面取得了显著进展,特别是在由于多重共线性导致的复杂情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e6/12219651/0e77da1553f5/41598_2025_6116_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验