利用HaloTag技术可视化人诱导多能干细胞来源的单细胞和类器官中PIEZO1的定位与活性。
Visualizing PIEZO1 localization and activity in hiPSC-derived single cells and organoids with HaloTag technology.
作者信息
Bertaccini Gabriella A, Casanellas Ignasi, Evans Elizabeth L, Nourse Jamison L, Dickinson George D, Liu Gaoxiang, Seal Sayan, Ly Alan T, Holt Jesse R, Wijerathne Tharaka D, Yan Shijun, Hui Elliot E, Lacroix Jerome J, Panicker Mitradas M, Upadhyayula Srigokul, Parker Ian, Pathak Medha M
机构信息
Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA.
出版信息
Nat Commun. 2025 Jul 1;16(1):5556. doi: 10.1038/s41467-025-59150-1.
PIEZO1 is critical to numerous physiological processes, transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of visualizing endogenous PIEZO1 activity and localization to understand its functional roles. To enable physiologically and clinically relevant studies on human PIEZO1, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with advanced imaging, our chemogenetic platform allows precise visualization of PIEZO1 localization dynamics in various cell types. Furthermore, the PIEZO1-HaloTag hiPSC technology facilitates the non-invasive monitoring of channel activity across diverse cell types using Ca-sensitive HaloTag ligands, achieving temporal resolution approaching that of patch clamp electrophysiology. Finally, we use lightsheet microscopy on hiPSC-derived neural organoids to achieve molecular scale imaging of PIEZO1 in three-dimensional tissue. Our advances establish a platform for studying PIEZO1 mechanotransduction in human systems, with potential for elucidating disease mechanisms and targeted drug screening.
Piezo1对众多生理过程至关重要,可将多种机械刺激转化为电信号和化学信号。最近的研究强调了可视化内源性Piezo1活性和定位以了解其功能作用的重要性。为了开展关于人类Piezo1的生理学和临床相关研究,我们对人类诱导多能干细胞(hiPSC)进行基因工程改造,使其表达与内源性Piezo1融合的HaloTag。结合先进的成像技术,我们的化学遗传学平台能够精确可视化Piezo1在各种细胞类型中的定位动态。此外,Piezo1-HaloTag hiPSC技术利用钙敏感的HaloTag配体,实现了对不同细胞类型通道活性的非侵入性监测,时间分辨率接近膜片钳电生理学。最后,我们在hiPSC衍生的神经类器官上使用光片显微镜,以实现Piezo1在三维组织中的分子尺度成像。我们的进展建立了一个在人类系统中研究Piezo1机械转导的平台,具有阐明疾病机制和进行靶向药物筛选的潜力。