Sacchetta Filippo, Yang Xuchun, Olivucci Massimo
Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena; via A. Moro 2, Siena, Italy.
Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, USA.
Nat Commun. 2025 Jul 1;16(1):5534. doi: 10.1038/s41467-025-60576-w.
Our understanding of the rules controlling the spectral tuning of light absorbing proteins is limited. When looking at rhodopsins as canonical examples, the fact that the cavity incorporates the chromophore counterion in different positions and polar residues with different orientations, leads to patterns of electrostatic potential whose effect is not obvious. In this work we use a model of the optogenetic reporter Arch-3 capable to describe the effect of the diffusion of its counterion charge on both excitation energies ( ) and chromophore geometry. By optimizing such charge for a set of increasing values, we show that progression towards redder values occurs along two distinct paths featuring a "compact" or an "extended" charge diffusion respectively. These results are validated by showing that both paths replicate the experimentally observed relationships between and chromophore isomerization in different sets of Arch-3 variants, NeoR variants and other microbial rhodopsins from 16 different organisms.
我们对控制光吸收蛋白光谱调谐规则的理解有限。以视紫红质作为典型例子来看,腔室在不同位置包含发色团抗衡离子以及具有不同取向的极性残基这一事实,导致了静电势模式,其效果并不明显。在这项工作中,我们使用光遗传学报告蛋白Arch-3的模型,该模型能够描述其抗衡离子电荷扩散对激发能( )和发色团几何结构的影响。通过针对一组不断增加的 值优化此类电荷,我们表明朝着更红的值的进展沿着两条不同的路径发生,分别具有“紧凑”或“扩展”的电荷扩散特征。通过表明这两条路径都复制了在不同组的Arch-3变体、NeoR变体以及来自16种不同生物体的其他微生物视紫红质中实验观察到的 与发色团异构化之间的关系,这些结果得到了验证。