Suppr超能文献

高通量DNA熔解测量有助于改进DNA折叠热力学模型。

High-throughput DNA melt measurements enable improved models of DNA folding thermodynamics.

作者信息

Ke Yuxi, Sharma Eesha, Wayment-Steele Hannah K, Becker Winston R, Ho Anthony, Marklund Emil, Greenleaf William J

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, USA.

Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5572. doi: 10.1038/s41467-025-60455-4.

Abstract

DNA folding thermodynamics are central to many biological processes and biotechnological applications involving base-pairing. Current methods for predicting stability from DNA sequence use nearest-neighbor models that struggle to accurately capture the diverse sequence dependence of secondary structural motifs beyond Watson-Crick base pairs, likely due to insufficient experimental data. In this work, we introduce a massively parallel method, Array Melt, that uses fluorescence-based quenching signals to measure the equilibrium stability of millions of DNA hairpins simultaneously on a repurposed Illumina sequencing flow cell. By leveraging this dataset of 27,732 sequences with two-state melting behaviors, we derive a NUPACK-compatible model (dna24), a rich parameter model that exhibits higher accuracy, and a graph neural network (GNN) model that identifies relevant interactions within DNA beyond nearest neighbors. All models show improved accuracy in predicting DNA folding thermodynamics, enabling more effective in silico design of qPCR primers, oligo hybridization probes, and DNA origami.

摘要

DNA折叠热力学对于许多涉及碱基配对的生物过程和生物技术应用至关重要。目前从DNA序列预测稳定性的方法使用最近邻模型,这些模型难以准确捕捉除沃森-克里克碱基对外二级结构基序的多样序列依赖性,这可能是由于实验数据不足所致。在这项工作中,我们引入了一种大规模并行方法——阵列熔解,它利用基于荧光的猝灭信号在重新利用的Illumina测序流动池上同时测量数百万个DNA发夹的平衡稳定性。通过利用这个包含27732个具有两态熔解行为的序列的数据集,我们推导出了一个与NUPACK兼容的模型(dna24),一个具有更高准确性的丰富参数模型,以及一个识别DNA中超越最近邻的相关相互作用的图神经网络(GNN)模型。所有模型在预测DNA折叠热力学方面都显示出更高的准确性,从而能够更有效地在计算机上设计定量聚合酶链反应(qPCR)引物、寡核苷酸杂交探针和DNA折纸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验