Serrano-Mislata Antonio, Hernández-García Jorge, de Ollas Carlos, Blanco-Touriñán Noel, Jurado-García Silvia, Úrbez Cristina, Gómez-Cadenas Aurelio, Sablowski Robert, Alabadí David, Blázquez Miguel A
Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, 46022, Valencia, Spain.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain.
Nat Commun. 2025 Jul 1;16(1):5635. doi: 10.1038/s41467-025-60733-1.
When exposed to stress, plants reduce growth while activating defense mechanisms-a behaviour proposed to help reallocate resources and meet the energy demands required for survival. Here, we have challenged this view by mutating the cyclin-dependent kinase inhibitor SMR1 to reverse the growth arrest imposed by high DELLA levels. These plants continue growing under limited water availability but maintain the same oxidative stress tolerance and survival rates as the parental line that halted growth. However, shoot and root meristematic cells that keep dividing under drought or genotoxic stress accumulate DNA damage, frequently leading to cell death. Since the DNA lesions are observed in the apical stem cells that give rise to all plant organs, including flowers, we propose that systemic growth arrest acts as a defense strategy that plants employ not only to maximize individual fitness, but also to ensure the accurate transmission of genetic information to their progeny.
当受到压力时,植物会减缓生长同时激活防御机制——这一行为被认为有助于重新分配资源并满足生存所需的能量需求。在此,我们通过突变细胞周期蛋白依赖性激酶抑制剂SMR1来挑战这一观点,以逆转高DELLA水平所导致的生长停滞。这些植物在水分供应有限的情况下仍继续生长,但与停止生长的亲本系保持相同的氧化应激耐受性和存活率。然而,在干旱或遗传毒性应激下持续分裂的茎尖和根尖分生组织细胞会积累DNA损伤,常常导致细胞死亡。由于在产生包括花在内的所有植物器官的顶端干细胞中观察到了DNA损伤,我们提出系统性生长停滞是植物采用的一种防御策略,不仅用于最大化个体适应性,还用于确保遗传信息准确传递给后代。